期刊文献+

基于马氏距离的半监督鉴别分析及人脸识别 被引量:5

Mahalanobis distance-based semi-supervised discriminant analysis for face recognition
下载PDF
导出
摘要 针对人脸识别应用中人脸样本的类别信息不足以及人脸样本特征间存在相关性的问题,提出了一种基于马氏距离的半监督鉴别分析.该方法在图嵌入框架下利用马氏距离对数据集中带有类别信息的样本进行边界Fisher分析,不仅保持了类内的紧致性和类间的分离性,而且抽取出有利于分类的鉴别特征,同时将不带类别信息的样本用于描述数据集的几何结构,保留了样本间的局部邻域信息.与传统的特征抽取方法相比,该方法有较好的识别性能,在ORL,YALE及AR人脸数据库上的实验验证了该方法的有效性. To address the problems that there is often no sufficient class-label information of face samples in face recognition application and some relativity also exist among face sample features,a semi-supervised discriminant analysis based on Mahalanobis distance was presented.The method makes use of the Mahalanobis distance to perform marginal fisher analysis(MFA) for labeled samples in the data set,which is on the basis of the graph embedding framework,so that it not only preserves the intraclass compactness and the interclass separability,but also extracts the discriminant characteristics for effective classification,and simultaneously the unlabeled samples were utilized to characterize the geometric structure of the data set,and thus the local neighborhood information among samples was well preserved.Compared with the traditional feature extraction methods,the proposed method has better recognition performance,and the experiments on ORL,YALE and AR face databases demonstrate the effectiveness of this method.
作者 史骏 陈才扣
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第12期1589-1593,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60875004) 江苏省高校自然科学基金资助项目(07KJB520133) 江苏省自然科学基金资助项目(BK2009184)
关键词 特征抽取 马氏距离 半监督 人脸识别 feature extraction Mahalanobis distance semi-supervised face recognition
  • 相关文献

参考文献10

  • 1Turk M A, Pentland A P. Face recognition using eigenfaces [C]//Proc 91 IEEE Comput Soc Conf Comput Vision Pattern Recognit. Piscataway, NJ : IEEE, 1991:586-591. 被引量:1
  • 2Belhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs Fisherfaces:recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) :711 -720. 被引量:1
  • 3He Xiaofei, Niyogi P. Locality preserving projections [ C ]//Proceedings of the Conference on Advances in Neural Information Processing Systems. Cambridge : MIT Press ,2003 : 153-160. 被引量:1
  • 4Yan Shuicheng,Xu Dong, Zhang Benyu, et al. Graph embedding and extension:a general framework for dimensionality reduction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelliaence .2007.29( 1 ) :40-51. 被引量:1
  • 5Xing E P, Ng A Y, Jordan M I, et al. Distance metric learning, with application to clustering with side-information [ M ]. Cambridge : MIT Press,2003:505-512. 被引量:1
  • 6何晓群编著..多元统计分析[M].北京:中国人民大学出版社,2004:380.
  • 7黄飞,周军,卢晓东.基于马氏距离的一维距离像识别算法仿真[J].计算机仿真,2010,27(3):31-34. 被引量:17
  • 8Aouada D, Baryshnikov Y, Krim H. Mahalanobis-based adaptive nonlinear dimension reduction [ C ]//Proceedings-International Conference on Pattern Recognition. Piscataway, NJ : IEEE, 2010 : 742-745. 被引量:1
  • 9Cai Deng, He Xiaofei, Han Jiawei. Semi-supervised discfiminant analysis[ C ]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ : IEEE ,2007 : 1-7. 被引量:1
  • 10Remus S, Tomasi C. Semi-supervised fisher linear discfiminant ( SFLD ) [ C ]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2010: 1862-1865. 被引量:1

二级参考文献6

共引文献16

同被引文献39

  • 1Weinland D, Ronfard R, Boyer E.A survey of vision-based methods for action representation, segmentation and recognition[J].Computer Vision and Image Understanding, 2011, 115(2):224-241. 被引量:1
  • 2Shotton J, Girshick R, Fitzgibbon A, et al.Efficient human pose estimation from single depth images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2821-2840. 被引量:1
  • 3Jhuang H, Gall J, Zuffi S, et al.Towards understanding action recognition[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV).Piscataway, NJ:IEEE Press, 2013:3192-3199. 被引量:1
  • 4Xia L, Chen C C, Aggarwal J K.View invariant human action recognition using histograms of 3d joints[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Piscataway, NJ:IEEE Press, 2012:20-27. 被引量:1
  • 5Yang X, Tian Y L.Eigenjoints-based action recognition using na?ve bayes nearest neighbor[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Piscataway, NJ:IEEE Press, 2012:14-19. 被引量:1
  • 6Wang J, Liu Z, Wu Y, et al.Mining actionlet ensemble for action recognition with depth cameras[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway, NJ:IEEE Press, 2012:1290-1297. 被引量:1
  • 7Zanfir M, Leordeanu M, Sminchisescu C.The moving pose:An efficient 3D kinematics descriptor for low-latency action recognition and detection[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV).Piscataway, NJ:IEEE Press, 2013:2752-2759. 被引量:1
  • 8Luo J, Wang W, Qi H.Group sparsity and geometry constrained dictionary learning for action recognition from depth maps[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV).Piscataway, NJ:IEEE Press, 2013:1089-1816. 被引量:1
  • 9Wang J, Yang J, Yu K, et al.Locality-constrained linear coding for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway, NJ:IEEE Press, 2010:3360-3367. 被引量:1
  • 10Yu K, Zhang T, Gong Y.Nonlinear learning using local coordinate coding[C]//Advances in Neural Information Processing Systems.La Jolla, CA:Neural Information Processing Systems Foundation, 2009:1-9. 被引量:1

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部