期刊文献+

基于GPGPU的生物序列快速比对 被引量:5

Fast Alignment of Biological Sequences Based on General Purpose Graphic Processor Unit
下载PDF
导出
摘要 在CPU-GPU异构平台下,提出一种高效的生物序列比对方案。该方案利用GPU的并行处理能力,通过对读延迟、写延迟、重组函数及数据传输进行优化,在OpenCL框架下重构Smith-Waterman算法,加快生物序列比对速度。实验结果证明,与CPU上传统的串行算法相比,该算法最高可获得约100倍的性能提升。 This paper presents a highly effective biological sequences alignment solution based on CPU-Graphic Processingr Unit(GPU) heterogeneous platform. The solution re-write Smith-Waterman(SW) algorithm in OpenCL platform, reorganizes the algorithm to adapt the GPU architecture and applies optimization of memory accessing latency and optimization of the memory deployment, fully utilizes GPU's parallel processing capability, greatly improves the effectiveness of algorithm. Experimental result shows that the solution has 100 times performance increase than the serial algorithm in CPU.
出处 《计算机工程》 CAS CSCD 2012年第4期241-244,共4页 Computer Engineering
关键词 生物信息学 序列比对 通用图形处理器 SMITH-WATERMAN算法 OpenCL框架 bioinformatics sequence alignment General Purpose Graphic Processing Unit(GPGPU) Smith-Waterman(SW) algorithm OpenCL framework
  • 相关文献

参考文献8

  • 1Gotoh O. An Improved Algorithm for Matching Biological Sequences[J]. Journal of Molecular Biology, 1982, 162(3): 705- 708. 被引量:1
  • 2Woznia K. Using Video-oriented Instructions to Speed Up Sequence Comparison[J]. Computer Applications in the Biosciences, 1997, 13(2): 145-150. 被引量:1
  • 3林江,唐敏,童若锋.GPU加速的生物序列比对[J].计算机辅助设计与图形学学报,2010,22(3):420-427. 被引量:15
  • 4Khajeh-Saeed A, Poole S, Perot J B. Acceleration of the Smith-Waterman Algorithm Using Single and Multiple Graphics Processors[J]. Journal of Computational Physic, 2010, 229: 4247- 4258. 被引量:1
  • 5Sengupta S, Harris M, Zhang Y, et al. Scan Primitives for GPU Computing[C] //Proc. of the 22nd ACM Symposium on Graphics Hardware. San Diego, California, USA: ACM Press, 2007: 97-106. 被引量:1
  • 6程豪,张云泉,张先轶,李玉成.CPU-GPU并行矩阵乘法的实现与性能分析[J].计算机工程,2010,36(13):24-26. 被引量:11
  • 7Liu Weiguo, Schmidt B, Voss G, et al. Bio-sequence Database Scanning on GPU[C] //Proc. of the 20th IEEE International Parallel & Distributed Processing Symposium. Shanghai, China: [s. n.] , 2006. 被引量:1
  • 8Manavski S A, Giorgio V. CUDA Compatible GPU Cards as Efficient Hardware Accelerators for Smith-Waterman Sequence Alignment[J]. BMC Bioinformatics, 2008, 9(S2): 10-16. 被引量:1

二级参考文献26

  • 1唐敏 ,Shang-Ching Chou ,董金祥 .GPU上的非侵入式风格化渲染[J].计算机辅助设计与图形学学报,2005,17(12):2613-2618. 被引量:3
  • 2戴正华,张庆丹,徐琳,谭光明,冯圣中.基于SSE2的Smith-Waterman算法[J].计算机工程与应用,2006,42(11):85-87. 被引量:2
  • 3Needleman S B, Wunsch C D. A general method applicable to the search for similarities in the amino acid sequence of two proteins [J]. Journal of Molecular Biology, 1970, 48 (3) : 443-453. 被引量:1
  • 4Smith T F, Waterman M S. Identification of common molecular subsequences [J]. Journal of Molecular Biology, 1981, 147(1): 195-197. 被引量:1
  • 5Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Journal of Nucleic Acids Research, 1997, 25(17) : 3389-3402. 被引量:1
  • 6Pearson W R, Lipman D J. Improved tools for biological sequence comparison [J]. Journal of National Academy of Sciences, 1988, 85(8); 2444-2448. 被引量:1
  • 7NVIDIA CUDA programming guide, Version 2.3 [M]. Santa Clara: NVIDIA Corporation, 2009. 被引量:1
  • 8Aji A M, Feng W C. Accelerating data serial applications on data-parallel GPGPUs:a systems approach [R]. Blacksburg: Virginia Tech, 2008. 被引量:1
  • 9Chiang J, Studniberg M, Shaw J, et al. Hardware accelerator for genomic sequence alignment [J]//Proceedings of the 28th IEEE EMBS Annual International Conference, New York, 2006, 1: 5787-5789. 被引量:1
  • 10Alpern B, Carter L, Gatlin K S. Microparallelism and high performance protein matching [C] //Proceedings of the ACM/IEEE on Supercomputing Conference, San Diego, 1995, 3-8. 被引量:1

共引文献24

同被引文献61

  • 1李玉岗,刘志勇.基于HPM模型的Smith-Waterman算法并行优化[J].计算机工程,2007,33(1):56-58. 被引量:2
  • 2Theoretical and computational biophysics group. GPU Acceleration of Molecular Modeling Applications [ EB/OL]. http://www, ks. uiuc. edu/Research/gpu, 2012.12. 被引量:1
  • 3Folding@ home Distributed Computing. What is protein folding [ EB/OL]. http://folding, stanford, edu, 2012.12. 被引量:1
  • 4Hillesland K E, Molinov S, Grzeszczuk R. Nonlinear optimization framework for image-based modeling on programmable graphics hardware[J]. ACM SIGGRAPH, 2003, 22(3) :925-934. 被引量:1
  • 5Bolz J, Farmer I, Grinspun E, SchrSoder P. Sparse matrix solvers on the GPU : conjugate gradients and muhigrid [ A 1. ACM SIG- GRAPH 2003[C], 2003, 22(3):917-924. 被引量:1
  • 6Macedonia M. The GPU enters computing mainstream [ J ]. IEEE Computer, 2003, 36( 10):106-108. 被引量:1
  • 7NVIDA. NVIDIA CUDA compute unified device architecture pro- gramming guide 2.0 [ S ]. http ://www. nvidia, com/object/'cuda develop, html. 2008.5. 被引量:1
  • 8Harvey M J, De Fabritiis G. h survey of computational malecular science using graphics processing units [ J]. WIREs Comput Mol Sci, 2012, 2(5) : 734-742. 被引量:1
  • 9NVIDIACorpTESLA个人超级计算[EB/OL].http://www.nvidia.com/,2012.12. 被引量:1
  • 10NVIDIA Corp. Technical Brief: NVIDIA GeForce 8800 GPU Ar- chitecture Overview [ EB/OL]. http ://www. docc88, corn,2006, 11. 被引量:1

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部