期刊文献+

Fredholm积分方程的正则化GMRES算法 被引量:2

Regularization GMRES Algorithm for Fredholm Integral Equation
下载PDF
导出
摘要 利用数值求积公式,对二维第1类Fredholm积分方程进行离散处理,引入正则化GMRES算法,将离散后的积分方程转化为离散适定问题,通过广义极小残余算法得到其数值解。数值模拟结果表明,正则化GMRES算法求解二维第1类Fredholm积分方程计算速度快、精度高。 Using numerical integration formula, the two-dimensional Fredholm integral equation is discrete. By introducing the regularization method, the discredited integral equation is transformed into a posed problem of discrete and the numerical solution is obtained by Generalized Minimal Residual(GMRES) algorithm. In the numerical simulation, different methods are compared with regularization GMRES method. The results show that the regularization GMRES method have advantages for solving two-dimensional first kind Fredholm integral equation with high computing speed and high accuracy.
出处 《计算机工程》 CAS CSCD 2012年第4期239-240,244,共3页 Computer Engineering
基金 国家自然科学基金资助项目(50979088)
关键词 数值求积 正则化法 FREDHOLM积分方程 适定问题 GMRES算法 numerical integration regularization method Fredholm integral equation posed problem Generalized Minimal Residual(GMRES) algorithm
  • 相关文献

参考文献4

二级参考文献26

  • 1杨智勇,周琪云,周定康.基于PCNN的灰度图像边缘检测方法[J].计算机工程与应用,2004,40(21):92-93. 被引量:17
  • 2Katsaggelos A K. Digital Image Restoration [ M ]. Berlin, Germany : Springer-Verlag, 1991. 被引量:1
  • 3Tikhonov A N, Arsenin V Y. Solution of Ⅲ-Posed Problems [ M ]. New York: John Wiley and Sons, 1977. 被引量:1
  • 4Hansen P C. The truncated SVD as a method for regularization [ J]. BIT. Numerical Mathematics, 1987, 27(4) : 534 -553. 被引量:1
  • 5Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems [ M ]. Dorrecht, Netherlands: Kluwer Academic Publishers, 1996. 被引量:1
  • 6Saad Y, Sehultz M. GMRES: a generalized minimal residual method for solving nonsymetric linear systems [ J ]. Socicty of Industrial and Applied Mathematics Journal on Scientific and Statistical Computing, 1986, 7(3) : 856 -869. 被引量:1
  • 7He Guo-qiang. A TSVD form for ill-posed equations leading to optimal convergence rates [ A ]. In: International Congress of Mathematicians. Abstracts of Short Communication and Poster Sessions [ C], Beijing, China, 2002: 328. 被引量:1
  • 8Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAM Review, 1992, 32(4) : 561 -580. 被引量:1
  • 9Calvetti D, Lewis B, Reichel L. GMRES, L-curve, and discrete ill- posed problems [J]. BIT. Numerical Mathematics, 2002, 42(1): 44 - 65. 被引量:1
  • 10柳建军.一种改进的双参数图像恢复正则化算法[A].见:第十二届全国图象图形学学术会议论文集[C],北京:清华大学出版社.2005:632-636. 被引量:1

共引文献11

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部