摘要
利用数值求积公式,对二维第1类Fredholm积分方程进行离散处理,引入正则化GMRES算法,将离散后的积分方程转化为离散适定问题,通过广义极小残余算法得到其数值解。数值模拟结果表明,正则化GMRES算法求解二维第1类Fredholm积分方程计算速度快、精度高。
Using numerical integration formula, the two-dimensional Fredholm integral equation is discrete. By introducing the regularization method, the discredited integral equation is transformed into a posed problem of discrete and the numerical solution is obtained by Generalized Minimal Residual(GMRES) algorithm. In the numerical simulation, different methods are compared with regularization GMRES method. The results show that the regularization GMRES method have advantages for solving two-dimensional first kind Fredholm integral equation with high computing speed and high accuracy.
出处
《计算机工程》
CAS
CSCD
2012年第4期239-240,244,共3页
Computer Engineering
基金
国家自然科学基金资助项目(50979088)
关键词
数值求积
正则化法
FREDHOLM积分方程
适定问题
GMRES算法
numerical integration
regularization method
Fredholm integral equation
posed problem
Generalized Minimal Residual(GMRES) algorithm