期刊文献+

迭代再权q范数正则化LS SVM分类算法

LS SVMs Classification Algorithm of Iterative Reweighted q-norm Regularization
下载PDF
导出
摘要 提出一种迭代再权q范数正则化最小二乘支持向量机(LS SVM)分类算法。该算法通过交叉校验过程选择正则化范数的阶次q(0<q<∞),具有分类效果稳定、收敛快、运行速度快的特点。使用该算法和LS SVM对比3组癌症数据,实验结果表明,该算法能够实现自适应特征选择,且比LS SVM推广能力强,在算法耗时方面优于LS SVM。 This paper proposes the classification algorithm of fast iterative reweighted q-norm regularization Least Squares Support Vector Machine(LS SVM). The proposed algorithm can select q value via cross-validation, where O〈q〈oc,, and has the characteristic of stability, quick-converging and low time complexity. In order to test the efficiency of the proposed algorithm, it is applied to three cancer datasets. Experimental results show that the presented algorithm can obtain adaptively feature selection with better generalization performance for the classification problems than LS SVM. and its training speed is much faster than LS SVM.
出处 《计算机工程》 CAS CSCD 2012年第3期166-168,共3页 Computer Engineering
关键词 迭代再权方法 q范数 最小二乘支持向量机 正则化 特征选择 分类算法 iterative reweighted method q-norm Least Squares Support Vector Machine(LS SVM) regularization feature selection classification algorithm
  • 相关文献

参考文献5

  • 1Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers[C] //Proc. of the Annual Workshop on Computational Learning Theory. Pittsburgh, USA: [s. n.] , 1992: 144-152. 被引量:1
  • 2Suykens J A K, van Gestel T, Brabanter J, et al. Least Squares Support Vector Machines[M]. Singapore: World Scientific, 2002. 被引量:1
  • 3Weston J, Elisseeff A, Scholkopf B, et al. Use of the Zero-norm with Linear Models and Kernel Methods[J]. Journal of Machine Learning Research, 2003, 3: 1439-1461. 被引量:1
  • 4Zhu Ji, Hastie T, Rosset S, et al. 1-norm Support Vector Machines[D]. Stanford, USA: Stanford University Stanford, 2004. 被引量:1
  • 5Foucart S, Lai M J. Sparsest Solutions of Underdetermined Linear System via Q-minimization for 0. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部