期刊文献+

WEKA环境下基于模糊理论的聚类算法 被引量:15

Clustering algorithm based on fuzzy theory in WEKA
下载PDF
导出
摘要 因特网上的数据规模大、动态性强,通常发现的知识或规则很可能是不精确和不完备的。为了克服以上不足,引入模糊理论,通过寻找模糊相似上近似集进行合理聚类,在确定聚类数目的过程中,利用平均信息熵进行最佳聚类。同时将模糊聚类算法嵌入WEKA平台,利用WEKA中的类和可视化功能,扩充了WEKA中的聚类算法。实验表明,算法对含有噪声的、分布不规则的大数据集具有很高的精度和收敛速度。 The data in Internet has a large scale and dynamic peculiarity and the discovered knowledge or rules are likely to be imprecise or incomplete generally. Fuzzy theory and information entropy were introduced into the clustering analysis to overcome the difficulties and achieve the best results of clustering by looking for Fuzzy similarity upper approximation. The process of embedding the Fuzzy approximation algorithm into the WEKA platform in which the classes and visualization functions of open source WEKA was fully utilized. The Fuzzy approximation algorithms extended the clustering algorithm in WEKA. The experiment proves that it has a higher accuracy and convergence for the large-scale data sets that are anomalous and noise.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2012年第1期22-26,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家863计划资助项目(2007AA01Z126)
关键词 模糊集 数据挖掘 模糊聚类 相似上近似 WEKA 聚类算法 fuzzy sets data mining fuzzy clustering similarity upper approximation WEKA clustering algorithm
  • 相关文献

参考文献8

二级参考文献42

  • 1姚再勇,郑启龙,许胤龙,姚震,张红涛,胡晨光.基于Eclipse的并行开发环境EMPI[J].计算机应用与软件,2005,22(10):5-7. 被引量:3
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3林金晓,陈伟男,周学功,彭澄廉,吴荣泉.基于Eclipse平台的边界扫描测试软件的开发[J].计算机工程,2007,33(12):280-282. 被引量:5
  • 4J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms [ M].New York:Plenum Press, 1981. 被引量:1
  • 5J C Bezdek, J Keller, R Krisnapuram, N R Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [ M]. Kluwer Academic, 1999. 被引量:1
  • 6R Krishnapuram, J Keller. A possibilistic approach to clustering [J].IEEE Trans Fuzzy Systems, 1993,1 ( 2 ) : 98 - 110. 被引量:1
  • 7M Bami, V Cappellini, A Mecocci. Comments on "A possibilistic approach to clustering" [ J ]. IEEE Trans Fuzzy Systems, 1996,4(3):393 - 396. 被引量:1
  • 8N R Pal, K Pal, J C Bezdek. A possibilistic fuzzy c-means clustering algorithm [J].IEEE Trans Fuzzy Systems,2005,13(4) :517 - 530. 被引量:1
  • 9Pal N R,Pal K, Bezdek J C.A new hybrid C-means clustering model [A ]. In Proceedings of the IEEE International Conference On Fuzzy Systems [C]. Piscataway: IEEE Press, 2004. 179 - 184. 被引量:1
  • 10Krishnapuram R, Keller J. The possibilisfic c-means algorithm: Insights and Recommendations [J].IEEE Transaction Fuzzy Systems, 1996,4(3) :385 - 393. 被引量:1

共引文献349

同被引文献138

引证文献15

二级引证文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部