期刊文献+

基于多阶段转换学习的群体研讨文本言语行为分类 被引量:2

On Speech Act Classification of Group Discussion Texts based on Multi-phase Transformation-based Learning
下载PDF
导出
摘要 在群体支持系统(Group Support Systems,GSS)的环境下,群体能够在很短时间内产生大量研讨文本,远远超过了人们对信息处理的能力。因此,迫切需要一种能够自动分析和处理群体研讨文本的方法,言语行为分类就是这类方法中有可能实现并且具有应用价值的一个。在分析Zeno研讨模型的基础上,提出了适合群体研讨语料的言语行为分类体系。采用基于转换学习的办法,通过引入多阶段转换学习的概念,初步解决了群体研讨文本言语行为分类的问题,并且在议题类别和一些表达主张的类别(如支持和反对)上取得了较好的识别效果。研究群体研讨文本的言语行为分类对于拓展GSS,进而研究和开发自动主持人系统具有重要意义。同时,也为在中文环境下解决其他类型研讨(如网络聊天室、即时聊天工具等)文本的言语行为分类问题提供了参考依据。 With the help of Group Support systems, group members may generate large amount of discus- sion texts in a short while, much more than what a human being can process. It is necessary provide an ap- proach to automatically analyze and process group discussion texts. Based on the analysis of Zeno argumen- tation model, we define a set of Speech Acts that are suitable for group discussion. By introducing multi- phase transformation based learning, we obtained satisfactory classification result for some Speech Act cat- egory such as positive proposition and negative proposition. This research is significant for extending Group Support Systems and developing automated facilitator for Group Support Systems in the future. It is also an example for future research on Speech Act classification in the Chinese context.
出处 《系统管理学报》 CSSCI 2012年第1期126-132,共7页 Journal of Systems & Management
基金 国家自然科学基金重大资助项目(70533030) 国家自然科学基金青年科学基金资助项目(71001038)
关键词 群体支持系统 转换学习 多阶段 群体研讨 言语行为 分类 group support systems(GSS) transformation-based learning multi-phase group discussion speech act classification
  • 相关文献

参考文献13

  • 1Jessup L M, Valacich J S. Group support systems: new perspectives [M]. New York: McMillan Pub-lishing Company, 1992. 被引量:1
  • 2Nunamaker J F, Dennis A R, Valacich J S, et al. E- lectronic meeting systems to support group work: theory and practice at Arizona [J]. Communication of the ACM, 1991(7) : 40-61. 被引量:1
  • 3Brill E. Transformation-based error-driven learning and natural language processing: a case study in part- of-speech tagging [J]. Computational Linguistics, 1995(4) : 543-565. 被引量:1
  • 4夏新松,肖建国.一种新的错误驱动学习方法在中文分词中的应用[J].计算机科学,2006,33(3):160-164. 被引量:9
  • 5Zhou Y, Huang C, Gao J, et al. Transformation based Chinese entity detection and tracking [C]// Proceedings of the 2nd International Joint Conference on Natural Language Processing. 2005. 被引量:1
  • 6赵永贞,刘挺,王志伟,陈惠鹏,邵艳秋.汉语文语转换系统中停顿指数的自动标注[J].中文信息学报,2004,18(5):48-55. 被引量:6
  • 7Samuel K, Carberry S, Vijay Shanker K. Dialogue act tagging with transformation-based learning [C]// Proceedings of COLING/ACL'98. 1998. 被引量:1
  • 8Reithinger N, Klesen M. Dialogue act classification using language models [C]//5th European Confer- ence on Speech Communication and Technology. Rhodes, Greece: ISCA. 1997. 被引量:1
  • 9Lager T. The μ-TBL system: Logic programming tools for transformation-based learning [C]//Pro- ceeding of the Third International Workshop on Com- putational Natural Language Learning (CoNLL-99). Bergen, 1999. 被引量:1
  • 10Carletta J, Isard S, Doherty-Sneddon G, et al. The reliability of a dialogue structure coding scheme [J]. Computational Linguistics, 1997 ( 1 ) : 13-31. 被引量:1

二级参考文献80

共引文献28

同被引文献68

  • 1赵永贞,刘挺,王志伟,陈惠鹏,邵艳秋.汉语文语转换系统中停顿指数的自动标注[J].中文信息学报,2004,18(5):48-55. 被引量:6
  • 2文勖,张宇,刘挺,马金山.基于句法结构分析的中文问题分类[J].中文信息学报,2006,20(2):33-39. 被引量:82
  • 3夏新松,肖建国.一种新的错误驱动学习方法在中文分词中的应用[J].计算机科学,2006,33(3):160-164. 被引量:9
  • 4CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:111
  • 5VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 6Austin J L. How to do things with words [M]. Cambridge: Harvard University Press, 1962. 被引量:1
  • 7Prasad R, Walker M. Training a dialogue act tagger for human-human and human-computer travel dialogues [C]//Proceedings of the 3rd SIGdial Workshop on Discourse and Dialogue. Philadelphia, Pennsylvania, 2002. 被引量:1
  • 8Fernandez R, Ginzburg J, Lappin S. Using machine learning for non-sentential utterance classification [C]//Proceedings of the 6th SIGdial Workshop on Discourse and Dialogue. Lisbon, Portugal, 2005. 被引量:1
  • 9Fukada T, Koll D, Waibel A, et al. ProbabiIistic dialogue act extraction for concept based multilingual translation systems [ C ]//The 5th International Conference on Spoken Language Processing (ICSLP 1998). Sydney, Australia, 1998. 被引量:1
  • 10SungC L, Day M Y, Yen H C, et al. A template alignment algorithm for question classification [C]// IEEE, 2008. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部