期刊文献+

基于区域的图切割算法求解Mumford-Shah图像分割模型 被引量:2

Region-based Graph Cut Algorithm for Mumford-Shah Image Segmentation Model
下载PDF
导出
摘要 在Egil Bae和Tai Xue-Cheng提出的图切割算法基础上,给出了一种改进算法用于求解Mumford-Shah图像分割模型。首先利用Mean Shift算法对原始图像进行过分割,基于过分割产生的小区域构造恰当的图,使得分割问题转化为求特定图的最小切割问题。数值实验结果显示,直接利用Mean Shift算法分割的效果不理想,本方法保持了与Egil Bae和Tai Xue-Cheng方法相类似的分割效果,而运算效率却有了很大提高。 An improved graph cut algorithm was proposed based on the method presented by Egil Bae and Xue-Cheng Tai for solving the Mumford-Shah image segmentation model.Firstly the original image was over-segmented using Mean Shift method.An appropriate graph was constructed on the basis of the produced small regions.Thus by finding the minimum cut over the special graph,we obtained the solution for the segmentation problem.Numerical experiments show that the segmentation results of Mean Shift algorithm are not desirable.Our method has similar results with that presented by Egil Bae and Xue-Cheng Tai.However,the computation efficiency is greatly improved.
出处 《计算机科学》 CSCD 北大核心 2012年第2期297-301,共5页 Computer Science
基金 国家自然科学基金(NSFC 60872138) 西安工业大学校长基金(XAGDXJJ-0931)资助
关键词 图像分割 图切割 区域 MUMFORD-SHAH模型 分片常数水平集方法 Mean SHIFT算法 Image segmentation Graph cut Regions Mumford-Shah model Piecewise constant level set method Mean shift algorithm
  • 相关文献

参考文献10

  • 1Komodakis N,Tziritas G,Paragios N.Fast,approximately opti-mal solutions for single and dynamic MRFS[C]∥Computer Vi-sion and Pattern Recognition.IEEE Conference,2007:1-8,17-22. 被引量:1
  • 2Lempitsky V,Rother C,Blake A.Logcut-efficient graph cut op-timization for markov random fields[C]∥IEEE 11th Interna-tional Conference on Computer Vision.2007:1-8,14-21. 被引量:1
  • 3Dahl G,Storvik G,Fadnes A.Large-scale integer programs inimage analysis[J].Operation Researth,2002,50(3):490-500. 被引量:1
  • 4Bae E,Tai X C.Graph Cut Optimization for the Piecewise Con-stant Level Set Method Applied to Multiphase Image Segmenta-tion[J].Scale Space and Variational Methods in Computer Vi-sion,2009,5567:1-13. 被引量:1
  • 5Lie J,Lysaker M,Tai X C.A variant of the level set method andapplications to image segmentation[J].Mathematics of Compu-tation,2006,75(255):1155-1174. 被引量:1
  • 6Tai X C,Christiansen O,Lin P,et al.Image segmentation usingsome piecewise constant level set methods with MBO type ofproject[J].International Journal of Computer Vision,2007,73:61-76. 被引量:1
  • 7Chambolle A.Total variation minimization and a class of binaryMRF models[J].Energy Minimization Methods in ComputerVision and Pattern Recognition,2005,3757:136-152. 被引量:1
  • 8Ranchin F,Chambolle A,Dibos F.Total variation minimizationand graph cuts for moving objects segmentation[J].Scale Spaceand Variational Methods in Computer Vision,2007,4485:743-753. 被引量:1
  • 9Tai X C,Yao C.Fast PCLSM with Newton updating algorithm[J].Image Processing Based on Partial Differential Equations,2007,Part III:249-262. 被引量:1
  • 10Comaniciu D,Meer P.Mean shift:A robust approach towardfeature space analysis[J].IEEE Trans.on Pattern Analysis andMachine Intelligence,2002,24:603-619. 被引量:1

同被引文献26

  • 1田考聪.描述性统计分册[M].北京:人民卫生出版社,2004:108-110. 被引量:1
  • 2Jiangyu Liu, Jian Sun, Heung-Yeung Shum. Paint Seleclion[J]. ACM Trans. Graph, 2009,28:1- 7. 被引量:1
  • 3Carsten Rother, Vladimir Kolmogorov, Andrew Blake. Crab cut: Interactive foreground extraction using iterated graph cuts [J]. ACM Trans. Graph. ,2004,23:309-314. 被引量:1
  • 4Bae E, Tai X C. Graph Cut Optimization for the Piecewise Constant Level Set Method Applied to Muhiphase Image Seg mentation[J]. Scale Space and Variational Method in Compute: Vision, 2009,5567: 1-13. 被引量:1
  • 5Brian L. Price, Bryan Morse, Scott Cohen. Geodesic graph cut for interactive image segmentation[J]. In Proc. CVPR, 2010: 3288-3295. 被引量:1
  • 6Ismail Ben Ayed, Hua mei Chen, Kumaradevan PunitbaKu mar, et al. Graph cut segmentation with a global constraint: Recovering region distribution via a bound of the bhattacharyya measure[J]. In Proc. CVPR, 2010: 3288-3295. 被引量:1
  • 7Viet-Quoc Pham, Keita Takahashi, Takeshi Naemura. Fore ground background segmentation using iterated distribution matching[J]. In Proc. CVPR, 2011: 2113 -2120. 被引量:1
  • 8Pock T, Cremers D, Bischof H. An algorithm for minimizing the Mumford-Shah functional[C] ffIEEE 12th International Confe- rence on Computer Vision. Kyoto,Japan, 2009 : 1133-1140. 被引量:1
  • 9Chan T F, Vese L. Active contours without edges [J]. IEEE Transactions on Image Processing,2001,10(2) 266-277. 被引量:1
  • 10杨勇,马志明,徐春.I.CV模型在医学图像分割中的应用[J].计算机学报,2010,36(10):184-186. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部