期刊文献+

多目标进化算法和代理模型技术在气动稳健优化设计中的应用 被引量:11

The application of multi-objective evolutionary algorithm and surrogate model to aerodynamic robust optimization design
下载PDF
导出
摘要 通过与传统优化方法的优缺点对比,提出针对飞行器环境参数存在不确定性影响时的气动稳健优化设计模型,并应用多目标进化算法和代理模型技术对稳健模型进行优化设计研究。提供了翼型稳健性优化实例,通过选择合适的翼型参数化方法和CFD求解程序以及不确定性分析方法,得到了稳健设计结果的Pareto前缘图。从其中选择的设计结果可以看出,稳健设计结果表现出更稳定的特性,证明了稳健设计的优势所在。 According to the differences analysis compared with the traditional optimization method,here constructs an aerodynamic robust optimization design model aimed at the uncertainty influence of the flight environment parameter,and also demonstrates how both multi-objective evolutionary algorithm and surrogate model can be used to achieve robust optimal designs.Airfoil robust optimization example using the chosen technique has executed and then obtained the Pareto frontier of the result.The illustrated result shows that the robust optimization gets more stable performance and more advantage in aerodynamic design.
出处 《空气动力学学报》 EI CSCD 北大核心 2012年第1期46-51,共6页 Acta Aerodynamica Sinica
关键词 多目标进化 代理模型 不确定性 稳健优化设计 翼型 multi-objective evolutionary surrogate model robust optimization design airfoil
  • 相关文献

参考文献9

  • 1李焦赞,高正红.气动设计问题中确定性优化与稳健优化的对比研究[J].航空计算技术,2010,40(2):28-31. 被引量:9
  • 2CIPRIAN M,FATEH N,PEDIRODA V,et al.Multi criteria decision making:a tool to take decisions in multi objective optimization[R].May 7-10 2007,AIAA paper 2007-2875. 被引量:1
  • 3王振国,...,,著..飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006:411页.
  • 4丁继锋,李为吉,张勇,唐伟.基于响应面的翼型稳健设计研究[J].空气动力学学报,2007,25(1):19-22. 被引量:21
  • 5SOBIECZKY H.Parametric airfoils and wings[J].Notes on Numerical Fluid Mechanics,1998,68,71-88. 被引量:1
  • 6苏伟.基于CFD技术和代理模型的气动外形优化设计方法研究[D].西安:西北工业大学航空学院,2007. 被引量:2
  • 7SU Wei,ZUO Yingtao,GAO Zhenghong.Preliminary aerodynamic shape optimization using genetic algorithm and neural network[R].Sep.6-8 2006,AIAA paper 2006-7106. 被引量:1
  • 8SHINYA W, TOMOLYULD H, MITSUNORI M. Neighborhood cultivation genetic algorithm for multi-objective optimization problems[A].In the Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and learning[C].Singapore:Nanyang Technological University,School of Electrical & Electronic Engineering,2002:198-202. 被引量:1
  • 9唐智礼.基于非确定性的翼型鲁棒反设计方法[J].南京航空航天大学学报,2007,39(1):16-21. 被引量:1

二级参考文献15

  • 1詹浩,朱军,白俊强,高正红.遗传算法结合反设计的翼型优化设计研究[J].西北工业大学学报,2006,24(5):541-543. 被引量:4
  • 2WULI, LUCHUYSE, SHARONPADULA. Robust airfoil optimization to achieve consistent drag reduction over a Mach range [ R]. ICASE Report No. 2001 - 22,2001. 被引量:1
  • 3Wei Su, Zhenghong Gao. Application of RBF Neural Network Ensemble to Aerodynamic Optimization [ A ]. 46th AIAA Aerospace Sciences Meeting and Exhibit [ C ]. Reno, Nevada Jan 2008. 被引量:1
  • 4Huyse L, Solving problems of optimization under uncertainty as statistical decision problems[R]. AIAA-2001-1519,2001. 被引量:1
  • 5Huyse L, Michael L R. Aerodynamic shape optimization of two-dimensional airfoil under uncertain conditions[R]. NASA/CR-2001-210648,2001. 被引量:1
  • 6Baysal O, Eleshaky M E. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics[J]. AIAA Journal, 1992,30 (3) : 718-725. 被引量:1
  • 7Jameson A. Aerodynamic design via control theory [J]. Journal of Scientific Computing, 1988, 3(3):233-260. 被引量:1
  • 8Hyoung K, Shigern D S, Baysal O, et al. Aerodynamic optimization of supersonic transport wing using unstructured adjoint method[J], AIAA J, 2001,39(6) : 1011-1020. 被引量:1
  • 9黄明恪.任意翼型跨音速绕流守恒全位势方程的快速有限差分解法[J].空气动力学学报,1984,13(2):1924-1924. 被引量:1
  • 10李汉杰 黄明恪.跨音速翼型非守恒全位势流AF3高效算法的应用[J].空气动力学学报,1988,16(4):7-13. 被引量:1

共引文献29

同被引文献219

引证文献11

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部