期刊文献+

基于Cosserat理论的四边简支自由振动微平板尺度效应研究 被引量:4

ON THE SIZE EFFECTS IN A FREELY-VIBRATING MICRO-PLATE WITH THE FOUR EDGES SIMPLY-SUPPORTED BASED ON THE COSSERAT THEORY
原文传递
导出
摘要 微观下材料内部结构将极大地影响材料的力学性能,对微纳米器件中典型的微平板结构尺度效应进行研究具有十分重要的意义.论文基于Cosserat理论推导出了微平板自由振动的微分方程,并根据四边简支边界条件假设振型函数,给出了固有频率的计算公式,对不同尺寸微平板固有频率的尺度效应进行了仿真分析.结果表明,考虑了尺度效应的微平板自由振动固有频率要高于经典理论中的固有频率.当特征长度与微平板厚度大小相当时,微平板固有频率表现出明显的尺度效应,并随着特征长度的增加而增大.同时,自由振动的尺度效应将随着微平板厚度的减小而逐渐增强,振动模态及长宽比不影响尺度效应.论文的研究将为微结构与系统的应用提供一定的理论基础. The mechanical properties of a certain material are always dependent on its internal structures,and thus,the investigation on the size effects of microstructure dynamics is greatly significant.The differential equation of a micro-plate under free vibration is presented using the modified Cosserat theory in this paper,and the formula of natural frequencies is obtained that meet SSSS boundary conditions,then the size effects of natural frequencies of micro-plates with different dimensions are analyzed.The results show that the natural frequency taking the size effects into account is higher than that based on the classic elastic theory.The size effects becomes more significant on the free vibrating natural frequency when the characteristic length and the micro-plates thickness come closer,which results in the increase of the natural frequencies along with the increase of characteristic length.Additionally,the size effect of micro-plate gradually strengthens with decrease of thickness,and the aspect ratio and vibration modes don't influence the size effects.The study presented is of fundament importance for the application of microstructure system.
出处 《固体力学学报》 CAS CSCD 北大核心 2012年第1期63-68,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(10902031) 国家博士后基金项目(20090451001)资助
关键词 尺度效应 COSSERAT理论 微平板 自由振动 size effects Cosserat theory micro-plate free vibration
  • 相关文献

参考文献10

  • 1Lam D C C,Yang F,Chong A C M,Wang J,Tong P. Experiments and theory in strain gradient elasticity [J].Journal of the Mechanics and Physics of Solids, 2003,51 : 1477-1508. 被引量:1
  • 2章定国,吴胜宝,康新.考虑尺度效应的微梁刚柔耦合动力学分析[J].固体力学学报,2010,31(1):32-39. 被引量:8
  • 3康新,席占稳.基于Cosserat理论的微梁振动特性的尺度效应[J].机械强度,2007,29(1):1-4. 被引量:19
  • 4Murmu T,Pradhan S C. Small scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory [J]. Physica E, 2009, 41 :1451 -1456. 被引量:1
  • 5Yang F,Chong A C M,Lam D C C,Tong P. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures, 2002, 39:2732-2740. 被引量:1
  • 6Zang X,Sharam P. Inclusions and in homogeneities in strain gradient elasticity with couple stresses and related problems[J]. International Journal of Solids and Structures, 2005,42 : 3833-3851. 被引量:1
  • 7Kong S,Zhou S, Nie Z,Wang K. The size-dependent natural frequency of Bernoulli-Euler micro-beams [J]. International Journal of Engineering Science, 2008,46 : 427-437. 被引量:1
  • 8Ma H M,Gao X L,Reddy J N. A micro-structure-dependent Timoshenko beam model based on a modified couple stress theory [J]. Journal of the Mechanics and Physics of Solids, 2008,56 : 3380-3390. 被引量:1
  • 9Asghari M, Ahmadian M T, Kahrobaiyan M H, Rahaeifard M. On the size-dependent behavior of functionally graded micro-beams [J]. Materials and Design, 2009,31 : 2324-2329. 被引量:1
  • 10Chong A C M,Yang F,Lam D C C,Tong P. Torsion and bending of micron-scaled structures[J]. Journal of Materials Research,2001,16(4) : 1052-1058. 被引量:1

二级参考文献38

  • 1章定国,余纪邦.作大范围运动的柔性梁的动力学分析[J].振动工程学报,2006,19(4):475-480. 被引量:23
  • 2康新,席占稳.基于Cosserat理论的微梁振动特性的尺度效应[J].机械强度,2007,29(1):1-4. 被引量:19
  • 3Fleck N A, Muller G M, Ashby M F, Hutchinson J W. Strain gradient plasticity theory and experiment [J]. Acta Materialia, 1994 (2), 42: 475-487. 被引量:1
  • 4Stolken J S, Evans A G. A mierobend test method for measuring the plasticity length seale [J]. Acta Materialia, 1998, 46 (14): 5109-5115. 被引量:1
  • 5Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10 (2) : 139-151. 被引量:1
  • 6Sharf I. Geometric stiffening in multibody dynamics formulations[J]. Journal of Guidance, Control and Dynamics, 1995, 18 (4): 882-891. 被引量:1
  • 7Choura S, Jayasuriya S, Medick M A. On the modeling and open-loop control of a rotating thin flexible beam[J]. Journal of Dynamic System, Measurement, and Control, 1991,113 (1): 26-33. 被引量:1
  • 8Bloch A M. Stability analysis of a rotating flexible system[J]. Acta Application Mathematics, 1989,15: 211-234. 被引量:1
  • 9肖建强 章定国.刚柔耦合系统动力学建模与数值仿真.固体力学学报,2005,26:82-87. 被引量:1
  • 10Chen S H, Wang T C. A new deformation theory with strain gradient effects[J]. International Journal of Plasticity,2002,18(8) : 971-995. 被引量:1

共引文献22

同被引文献58

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部