期刊文献+

利用BP-NN算法的机器人臂重力补偿研究 被引量:5

Research on Gravity Compensation Using BP-NN Algorithm for Robot Arm
下载PDF
导出
摘要 利用反向传播神经网络(BP-NN)学习算法,对机器人臂的重力补偿进行了研究。给出了机器人臂各关节扭矩的重力项理论计算公式及其连杆参数识别方法,同时,对BP-NN算法进行了详细分析,利用BP-NN来处理机器人臂重力项并进行试验。试验结果表明,采用该学习算法得到的机器人臂重力项输出值和实测值基本一致,能有效减少机器人臂重力项计算量,达到实时控制的目的。 By adopting back propagation-neural network(BP-NN) learning algorithm,the gravity compensation for robot arm is researched.Both the theoretical computation formula of the gravity item of each joint torque in robot arm,and the parameter identification method of their linkages is given,in addition,the BP-NN algorithm is analyzed in detail,and the BP-NN is used to handle the gravity items of robot arm and the experiment is conducted.The test result shows that the output value of gravity items of robot arm learnt with the BP-NN is basically conforming with the measured value,and the work load of calculation for the gravity items of robot arm is effectively reduced and the real-time control can be carried out.
出处 《自动化仪表》 CAS 北大核心 2012年第2期22-24,共3页 Process Automation Instrumentation
基金 国家留学基金资助项目(编号:2007102654) 重庆市教委2011年度科学技术研究基金资助项目(编号:KJ112203)
关键词 BP-NN 最小二乘法 重力补偿 实时控制 参数识别 Back propagation-neural network(BP-NN) Least square method Gravity compensation Real-time control Parameter identification
  • 相关文献

参考文献7

二级参考文献26

  • 1Ikeura R, Inooka H. Variable impedance control of a robot for cooperation with a human[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1995: 3097-3102. 被引量:1
  • 2Hirata Y, Takagi T, Kosuge K, et al. Motion control of multiple DR Helpers transporting a single object in cooperation with a human based on map information[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 995-1000. 被引量:1
  • 3Taga G. A model of the neuro-musculo-skeletal system for human locomotion .2. Real-time adaptability under various constraints[J]. Biological Cybernetics, 1995, 73(2): 113-121. 被引量:1
  • 4Kotosaka S, Schaal S. Synchronized robot drumming by neural oscillators[J]. Journal of the Robotics Society of Japan, 2001, 19(1): 116-123. 被引量:1
  • 5Okada M, Tatani K, Nakamura Y. Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 1410-1415. 被引量:1
  • 6Hashimoto M, Hattori T, Horiuchi M, et al. Development of a torque sensing robot arm for interactive communication[C]//Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication. Piscataway, NJ, USA: IEEE, 2002: 344-349. 被引量:1
  • 7Hashimoto M, Kasuga T, Horiuchi M. Development of a joint torque sensing robot ann for human-robot physical interactions[C]// Proceedings of the 6th Japan-France Congress on Mechatronics and 4th Asia-Europe Congress on Mechatronics. Saitama, Japan: JFMC, 2003: 163-168. 被引量:1
  • 8Hashimoto M,Hattori T,Horiuchi M.Development of a torque sensing robot arm for interactive communication[C]//Proceedings of the IEEE Interanational Conference on Robot and Human Interactive Communication,September 25-27 2002,Berlin.German:IEEE,2002:344-349. 被引量:1
  • 9蔡自兴.机器人学[M].北京:电子工业出版社,2004:13-16. 被引量:1
  • 10飞思科技产品研发中心.Matlab6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2004.. 被引量:4

共引文献36

同被引文献47

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部