期刊文献+

基于非牛顿流体多相流的磁性药物靶向给药捕获效率分析 被引量:1

Research on Capture Efficiency of Targeting Magnetic Drug Target Delivery Based on Non-Newton Fluid Multiphase Flow
下载PDF
导出
摘要 为研究磁性靶向系统中各参数对捕获效率的影响,根据血液和矩形永磁铁特性,建立描述磁性靶向药物在血液中流动状态的两相卡森-牛顿模型,分析磁性纳米颗粒在血管中受磁力和流体力共同作用的运动轨迹,得到血管三维空间捕获效率的理论公式,并进一步提出药物捕获体积优化模型。使用Matlab仿真比较两相卡森-牛顿模型、单相卡森模型、单相牛顿模型的血液流速、捕获效率,揭示不同模型下磁性药物捕获体积变化规律,探讨磁性药物靶向系统中药物颗粒半径、磁场强度、磁铁与血管距离、血管半径等参数对捕获效率的影响关系。分析表明,非牛顿流体多相流模型可以更好地描述磁性药物靶向系统的特性与规律;而由仿真获知,两相卡森-牛顿模型比单相卡森模型和单相牛顿模型捕获效率均大4%以上,且颗粒的磁性物质半径比为0.75时,捕获的药物体积最大。研究结果可以为磁性靶向系统和药物颗粒设计提供理论依据。 In order to analyze the influence of magnetic parameters on capture efficiency,a two phase Casson-Newton model was developed to describe magnetic drug flowage in blood based on blood and rectangular magnet properties.The motion of magnetic nanoparticles under magnetic force and fluid force in blood vessel was analyzed,theoretic formulation of blood vessel 3D capture efficiency and further propose optimization model for capture drug volume was obtained to improve drug efficacy.Blood velocity and capture efficiency of Casson-Newton model,Newton model and Casson model were simulated by Matlab and compared to reveal the variation of capture drug volume,and the effects of particle radius,magnetic material radius ratio,magnetic field strength,distance between magnet and blood vessel,vessel radius,and other parameters on capture efficiency.According to the analysis results,the Non-Newton multiphase model performed system property better,the capture efficiency of Casson-Newton model was 4% higher than the two other models,and the capture drug volume reached maximum when magnetic materials radius ratio was 0.75.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第1期96-102,共7页 Chinese Journal of Biomedical Engineering
基金 上海交通大学医理工(YG2009ZD203)
关键词 磁性药物靶向 卡森-牛顿模型 捕获效率 矩形磁铁 优化给药 magnetic drug target casson-newton model capture efficiency rectangular magnet optimizing drug delivery
  • 相关文献

参考文献2

二级参考文献18

  • 1Christoph A, Wolfgang A, Roswitha J K, Fritz G P, Peter H, Christian B, Wolfgang E, Stefan W and Andreas S L 2000 Cancer Res. 60 6641 被引量:1
  • 2Shelton D C, Samuel A W and Gregory M L 2007 Curt. Opinion Biotech. 18 1 被引量:1
  • 3Andreas S L, Christoph A and Christian B 2001 Y Surg. Res. 95 200 被引量:1
  • 4Widder K J, Morris R M, Poore G H and Senyei A E 1983 Eur. J. Cancer Clin. Oncol. 19 135 被引量:1
  • 5Li J P, Wu C H, Gao F, Zhang R Y, Lu Gang, Fu D G, Ch B A and Wang X M 2006 Bioorg. Med. Chem. L 16 4808 被引量:1
  • 6Zhang L Y, Dou Y H, Zhang L and Gu H C 2007 Chin. Phys. Lett. 24 3253 被引量:1
  • 7Ritter J A, Ebner A D, Daniel K D and Stewart K L 2004 J. Magn. Magn. Mater. 280 184 被引量:1
  • 8Puller S K and Callo J M 1999 J. Drug Target 6 215 被引量:1
  • 9Xiong P, Guo P, Xiang D and He J S 2006 Act Phys. Sin. 55 4383 被引量:1
  • 10Pu S L, Chen X F, Di Z Y, Geng T and Xia Y X 2007 Chin. Phys. Lett. 24 483 被引量:1

共引文献4

同被引文献7

  • 1Hfeli,Urs,et al.,eds.Scientific and clinical applications of magnetic carriers[M].Springer,1997. 被引量:1
  • 2Mikkelsen C,Fougt Hansen M,Bruus H.Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems[J].Journal of Magnetism and Magnetic Materials,2005,293(1):578-583. 被引量:1
  • 3Furlani E P,Ng K C.Analytical model of magnetic nanoparticle transport and capture in the microvasculature[J].Physical review E,2006,73(6):061919. 被引量:1
  • 4Avilés M O,Ebner A D,Chen H,et al.Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles[J].Journal of magnetism and magnetic materials,2005,293(1):605-615. 被引量:1
  • 5Jones T B.Electromechanics of particles[M].Cambridge University Press,2005. 被引量:1
  • 6Jackson J D,Fox R F.Classical electrodynamics[J].American Journal of Physics,1999,67:841. 被引量:1
  • 7徐华,宋涛.磁性药物靶向治疗的进展[J].国外医学(生物医学工程分册),2004,27(1):61-64. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部