期刊文献+

先进压水堆熔融物堆内滞留参数不确定分析研究 被引量:7

Research on Uncertainty Analysis of In-Vessel Retention Parameters in Advanced PWR
下载PDF
导出
摘要 压水堆核电厂在严重事故下将发生堆芯熔化事故而形成熔融池。形成熔融池的过程具有很大的不确定性,这影响到反应堆压力容器熔融物堆内滞留(IVR)策略的有效性。本工作以AP1000核电厂两层IVR模型为研究对象,对成功实施反应堆压力容器外部冷却(ERVC)的假想严重事故进行了熔融池参数不确定性分析,包括参数的敏感性分析和使用拉丁超立方抽样的概率分析。结果表明:衰变功率对IVR评价参数影响最大,应采取措施(如上堆腔注水)尽量延缓堆芯熔化的时间;熔融物中不锈钢的质量将对金属层参数造成较大影响,可考虑在压力容器内布置牺牲性材料来减小金属层的集热效应;氧化物层外压力容器失效的概率仅为1.2%,但金属层外压力容器失效的概率高达20%。本结果对今后IVR策略研究和设计具有一定的指导意义,同时也为压水堆核电厂安全评审提供理论支持。 A molten pool comes into being after core damage under severe accident conditions in PWR plant. It has many uncertainty factors about the forming process of the molten pool, and this will affect the validity of in-vessel retention (IVR) strategy of reactor vessel. Based on the two-layer IVR model of AP1000, the study on the parameters uncertainty of molten pool under assumed severe accident conditions for external reactor vessel cooling (ERVC) was achieved, including sensitivity analysis and Latin hypercube sampling (LHS) probability analysis of the parameters. The results show that decay power has the essential effect on IVR evaluation parameters. Actions such as water injection from upper plenum should be taken to delay the core molten time. The mass of stainless steel in debris has great Some penalty materials could be placed in metal layer. The invalidation probability merely 1.2 reaches up research an plants. impact on parameters of molten metal layer. vessel to mitigate the heat focus effect of the of vessel outside of molten ceramic layer is merely 1.2%, but the invalidation probability of vessel outside of molten metal layer to 20%. This study has certain directive significance on future IVR strategy d design, and also provides theoretical support to safety evaluation of PWR plants.
作者 徐红 周志伟
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2012年第1期37-42,共6页 Atomic Energy Science and Technology
关键词 严重事故 堆内滞留 敏感性分析 不确定分析 拉丁超立方抽样 severe accident in-vessel retention sensitivity analysis uncertainty analysis Latin hypercube sampling
  • 相关文献

参考文献7

  • 1UK AP1000 probabilistic risk assessment report, UKP-GW-GL 022[R]. UK: Westinghouse Electric Corporation, 2007. 被引量:1
  • 2林诚格主编..非能动安全先进核电厂 AP1000[M].北京:原子能出版社,2008:516.
  • 3REMPE J L, KNUDSON D L, ALLISON C M, et al. Potential for AP600 in-vessel retention through ex-vessel flooding, INEEL/EXT-9700779[R]. US: OSTI, 1997. 被引量:1
  • 4SALTELLI A, CHAN K, SCOTT E M. Sensitivity analysis[M]. New York~ Wiley, 2000. 被引量:1
  • 5傅孝良,杨燕华,周卫华.CPRloOO堆大LOCA事故堆芯熔融及熔池传热特性分析[C]//2009年核动力厂严重事故管理研讨会.深圳:中科华核电技术研究院,2009. 被引量:1
  • 6TANG Boxin. Selecting Latin hypercubes using correlation criteria[J]. Statistica Sinica, 1998, 8 : 965-977. 被引量:1
  • 7Analysis of in-vessel retention and e~vessel fuel coolant interaction for AP1000, NUREG/CR6849, ERI/NRC-04-201[R].[S. 1.]: NR Energy Research, Inc. , 2004. 被引量:1

同被引文献49

  • 1REMPE J L, SUH K Y, CHEUNG F B, et al. In-vessel retention of molten corium: Lessons learned and outstanding issues [J]. Nuclear Technology, 2008, 161(3): 210-266. 被引量:1
  • 2KHABENSKY V B, GRANOVSKY V S, BECHTA S V, et al. Severe accident manage- ment concept of the VVER-1000 and the justifi- cation of corium retention in a crucible-type core catcher[J]. Nuclear Engineering and Technolo gy, 2009, 41(5): 561-574. 被引量:1
  • 3DOMBROVSKII L A, MINEEV V N, VLA SOV A, et al. In-vessel corium catcher of a nu- clear reactor[J].Nuclear Engineering and De- sign, 2007, 237(15-17): 1 745-1 751. 被引量:1
  • 4GUSAROV V V, ALMJASHEV V I, KHABENSKY V B, et al. Physicochemical modeling and analysis of the interaction between a core melt of the nuclear reactor and a sacrificial material [J]. Glass Physics and Chemistry, 2005, 31(1): 53-66. 被引量:1
  • 5THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel coolability and retention of a core melt, DOE/ID-10460[R]. US.. OSTI, 1996. 被引量:1
  • 6SEILER J M, TOURNIAIRE B, DEFOORT F, et al. Consequences of material effects on in-ves- sel retention [J]. Nuclear Engineering and De-sign, 2007, 237(15-17): 1 752-1 758. 被引量:1
  • 7ZHANG Y P, QIU S Z, SU G H, et al. Analy- sis of safety margin of in-vessel retention for AP1000[J].Nuclear Engineering and Design, 2010, 240(8): 2 023-2 033. 被引量:1
  • 8TOULOUKIAN Y S. Thermophysical properties of matter: Vol. 13[M]. New York: IFI/Ple- num, 1977. 被引量:1
  • 9MALOKA I E. Thermal conductivities of liquid mixtures[J]. Petroleum Science and Technology, 2007, 25(8): 1 065-1 072. 被引量:1
  • 10ROWLEY R L. A local composition model for multicomponent liquid mixture thermal conduc tivities[J]. Chemical Engineering Science, 1982, 37(6) : 897-904. 被引量:1

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部