摘要
针对制导过程中一些状态可能进入饱和进而影响系统性能的问题,结合制导系统的特点,在有限时间理论框架下提出一种抗饱和制导律设计方法。首先以矩阵不等式的形式给出了保证有限时间有界且有限时间输入输出稳定的充分条件;而后在此基础上研究了基于有限时间理论的抗饱和制导律设计方法。此方法利用事先给定的有限时间区间和加权矩阵函数刻画系统的动态品质需求,同时能在理论上严格保证系统状态有界,仿真结果也表明在此方法设计的控制器作用下,系统能在有限时间内使视线角速率趋近于零,同时加速度亦不超过物理限制。
An anti-saturation guidance law designed by finite-time theory is proposed in this paper,which can solve the problem that system states may be saturated in the guidance process.The sufficient conditions are proposed by means of Differential Linear Matrix Inequalities to guarantee the system both Input-Output Finite-time Stabilization and Finite-Time Boundedness.Then the anti-saturation guidance law design method is presented.While ensuring that the system state is bounded,the method uses a pre-given finite-time interval and pre-given weighted matrix functions to characterize the requirements for the system dynamic characteristics.The simulation results also show that the proposed method can drive the line of sight angular rate near zero in the finite-time interval,while the acceleration does not exceed the physical limitations.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2012年第2期175-182,共8页
Journal of Astronautics
基金
国家自然科学基金资助(60736022
61104193)
关键词
有限时间
抗饱和
制导
输入输出稳定
Finite-time
Anti-saturation
Guidance
Input-output stability