期刊文献+

多抓取模式下人手握力的肌电回归方法 被引量:4

Force regression from EMG signals under different grasping patterns
下载PDF
导出
摘要 为实现假手抓取物体时的力控制,采用支持向量机回归算法从多通道肌电信号中实时萃取握力信息.利用6通道表面肌肤电极采集人体前臂肌电信号,采用一枚6维力传感器记录人手施力信息,讨论了随意捏取以及3种规范化捏取模式下两者的回归精度,并进行了跨期次精度验证及多方法比较实验.结果表明,采用支持向量机方法能够获得较好的跨期次回归性能:随意捏模式均方误差(6.31±1.20)N,相关系数平方0.85±0.05;规范化模式均方误差(5.04±0.67)N,相关系数平方0.90±0.03.结合模式分类算法,在线握力回归误差可达5 N左右,误差率在10%以内. To implement the force control of a prosthetic hand when grasping objects,a method of support vector regression(epsilon-SVR) is adopted to extract the force information from multi-channel myoelectric(eletromyography,EMG) signals.Six surface EMG electrodes are attached on the forearm for recording EMG signals.A six-dimensional force sensor is used for collecting the force data.The regression accuracy between these two signals is studied under several hand grasping modes,i.e.,one random grasping mode and three standardized grasping modes.The experimental results show that the epsilon-SVR can achieve better cross-session regression accuracy.Under the random mode,the mean squared error(MSE) is(6.31±1.20)N,and the squared correlation coefficient(SCC) is 0.85±0.05.While under the standardized modes,the mean MSE and SCC can arrive at(5.04±0.67) N and 0.90±0.03,respectively.Companying with pattern recognition,the online force regression can acquire an error around 5 N,which is bellow 10% of the full force range.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第1期83-87,共5页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(2009AA043803) 新世纪优秀人才支持计划(NCET-09-0056) 国家重点实验室自主课题(SKLRS200901B) 国家基础研究发展规划资助项目(973-2011CB013306 2011CB013305)
关键词 假手 肌电 支持向量机 回归 prosthetic hand electromyography support vector machine regression
  • 相关文献

参考文献1

  • 1Da-peng Yang~1 Jing-dong Zhao~1 Yi-kun Gu~1 Xin-qing Wang~1 Nan Li~1 Li Jiang~1Hong Liu~(1,2) Hai Huang~3 Da-wei Zhao~41.State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150001,P.R.China2.Institute of Robotics and Mechatronics,German Aerospace Center,Munich 82230,Germany3.College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,P.R.China4.College of Automation,Harbin Engineering University,Harbin 150001,P.R.China.An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals[J].Journal of Bionic Engineering,2009,6(3):255-263. 被引量:17

二级参考文献31

  • 1俞昌东,姜力,黄海,史士才.残疾人假手的仿人和欠驱动机构研究[J].机械设计,2007,24(9):44-46. 被引量:2
  • 2James N. Ingram,Konrad P. K?rding,Ian S. Howard,Daniel M. Wolpert.The statistics of natural hand movements[J]. Experimental Brain Research . 2008 (2) 被引量:1
  • 3J.L. Pons,E. Rocon,R. Ceres,D. Reynaerts,B. Saro,S. Levin,W. Van Moorleghem.The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects[J]. Autonomous Robots . 2004 (2) 被引量:1
  • 4Corinna Cortes,Vladimir Vapnik.Support-Vector Networks[J]. Machine Learning . 1995 (3) 被引量:1
  • 5Ambrose R O,Aldridge H,Askew R S,Burridge R R,Bluethmann W,Diftler M,Lovchik C,Magruder D,Rehnmark F.Robonaut:Nasa‘s space humanoid. IEEE Intelligent Systems and their Applications . 2000 被引量:1
  • 6Biagiotti L,Lotti F,Melchiorri C,Vassura G.How Far is the Human Hand? A Review on Anthroponorphic Robotic End-Effectors. http://www-lar.deis.unibo.it/woda/data/deis-lar-publications /3cbd.Document.pdf . 2002 被引量:1
  • 7Bicchi A.Hands for dexterous manipulation and robust grasping:A difficult road toward simplicity. IEEE Transactions on Robotics and Automation . 2000 被引量:1
  • 8Hollerbach J M. Workshop on the Design and Control of Dexterous Hands . 1982 被引量:1
  • 9Zollo L,Roccella S,Guglielmelli E,Carrozza M C,Dario P.Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE ASME Transactions on Mechatronics . 2007 被引量:1
  • 10De Luca C J.The use of electromyography in biomechanics. Journal of Applied Biomechanics . 1997 被引量:1

共引文献16

同被引文献22

  • 1鲁守银,傅孟潮,厉秉强,马培荪.DWR-I遥操作高压带电作业机器人[J].上海交通大学学报,2005,39(5):804-804. 被引量:3
  • 2顾毅,杨汝清,宋涛,车立新.关节式带电清扫机器人的绝缘性及安全性设计[J].机器人,2006,28(2):149-153. 被引量:4
  • 3罗志增,杨广映.基于触觉和肌电信号的假手模糊控制方法研究[J].机器人,2006,28(2):224-228. 被引量:8
  • 4Otto bock. Otto bock sensor hand speed [EB/OL]. [2014-12-26]. http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/54026.html. 被引量:1
  • 5XING K, YANG P, HUANG J, et al. A real-time EMG pattern recognition method for virtual myoelectric hand control [J]. Neurocomputing, 2014, 136: 345-355. 被引量:1
  • 6ERDEMIR A, McLEAN S, HERZOG W, et al. Model-based estimation of muscle forces exerted during movements [J]. Clinical Biomechanics, 2007, 22(2): 131-154. 被引量:1
  • 7SIDEK S N, MOHIDEEN A J H. Mapping of EMG signal to hand grip force at varying wrist angles [C]// IECBES 2012: Proceedings of the 2012 IEEE International Conference on Biomedical Engineering and Sciences. Piscataway: IEEE, 2012: 648-653. 被引量:1
  • 8DUQUE J, MASSET D, MALCHAIRE J. Evaluation of handgrip force from EMG measurements [J]. Applied Ergonomics, 1995, 26(1): 61-66. 被引量:1
  • 9PHINYOMARK A, PHUKPATTARNONT P, LIMSAKUL C. Fea-ture reduction and selection for EMG signal classification [J]. Expert Systems with Applications, 2012, 39(8): 7420-7431. 被引量:1
  • 10ZHANG D, XIONG A, ZHAO X, et al. PCA and LDA for EMG-based control of bionic mechanical hand [C]// ICIA 2012: Proceedings of the 2012 IEEE International Conference on Information and Automation. Piscataway: IEEE, 2012: 960-965. 被引量:1

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部