期刊文献+

基于人工神经网络的热油管道能耗预测模型 被引量:2

The predicting model for the energy-consumption of the hot oil pipeline based on artificial neural network
下载PDF
导出
摘要 对长输管道而言,影响管道输油成本变化的因素众多,但影响最大的是生产油耗和电耗费用。为了更深入地探索输油过程中输量与能耗的变化关系,以某条输油管道几年来输量及生产油耗、电耗数据为基础,用人工神经网络的方法建立了管道输量与生产油耗、电耗的预测模型。分析表明,该模型的计算结果相对偏差在±5%以内,满足工程实际需要,因此可以用该模型来预测热油管道的生产油耗和电耗。该研究首次建立了热油管道输量与生产油耗和电耗的预测模型,为预测管道的能耗总量提供了便利。 For the long-distance pipeline,there are many factors affecting the cost of pipeline transportation,the major factors are the oil consumption and electric consumption in production.In order to explore the relationship between the throughput and the power consumption during oil transporting,the predicting model for the throughput of pipeline and the oil/electric consumption for production can be established by the artificial neural network method according to the data on the throughput and oil/electric consumption of an oil transportation pipeline in recent years.The analysis shows that the relative error of this model is ± 5% and can meet the actual requirements of engineering.The model can help to predict the total energy consumption of pipeline transportation.
出处 《石油石化节能》 2012年第1期6-8,48,共4页 Energy Conservation in Petroleum & PetroChemical Industry
关键词 长输管道 热油管道 人工神经网络 能耗预测模型 Long-distance pipeline,Hot oil pipeline,Artificial neural network,Predicting model for the energy-consumption
  • 相关文献

参考文献8

二级参考文献11

共引文献20

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部