摘要
在传统动态矩阵控制算法中,通过当前预测值和实际值的误差来对未来时刻的预测输出进行校正,这种方法在一定程度上可以克服扰动、噪声的影响,但是对模型失配问题仍有一些局限性。最小二乘相关向量回归(LS-RVR)是在相关向量回归的基础上发展起来的,相对于相关向量回归具有更好的回归性能。提出了一种基于最小二乘相关向量回归误差补偿的动态矩阵控制算法,并进行了仿真实验。仿真研究结果表明,该算法具有良好的控制性能。
In traditional DMC, the predictive output for coming future is compensated by the error between current predictive value and actual value. This calculation method can overcome the influence from disturbance and noise. It still has some limitations on rnodel mismatch problem. The LS-RVR (Least Squares Relevance Vector Regression) is developed on the base of RVR (Relevance Vector Regression), and has a better regression ability. The DMC based on LS- RVR error compensation is proposed and simulated. The simulation result indicates that this calculation method has better control performance.
出处
《石油化工自动化》
CAS
2012年第1期33-37,共5页
Automation in Petro-chemical Industry
基金
国家高技术研究发展计划项目(2007AA04Z195)
长三角科技联合攻关项目(2011C16040)