期刊文献+

基于LS-RVR误差补偿的动态矩阵控制

Dynamic Matrix Control Based on LS-RVR Error Compensation
下载PDF
导出
摘要 在传统动态矩阵控制算法中,通过当前预测值和实际值的误差来对未来时刻的预测输出进行校正,这种方法在一定程度上可以克服扰动、噪声的影响,但是对模型失配问题仍有一些局限性。最小二乘相关向量回归(LS-RVR)是在相关向量回归的基础上发展起来的,相对于相关向量回归具有更好的回归性能。提出了一种基于最小二乘相关向量回归误差补偿的动态矩阵控制算法,并进行了仿真实验。仿真研究结果表明,该算法具有良好的控制性能。 In traditional DMC, the predictive output for coming future is compensated by the error between current predictive value and actual value. This calculation method can overcome the influence from disturbance and noise. It still has some limitations on rnodel mismatch problem. The LS-RVR (Least Squares Relevance Vector Regression) is developed on the base of RVR (Relevance Vector Regression), and has a better regression ability. The DMC based on LS- RVR error compensation is proposed and simulated. The simulation result indicates that this calculation method has better control performance.
出处 《石油化工自动化》 CAS 2012年第1期33-37,共5页 Automation in Petro-chemical Industry
基金 国家高技术研究发展计划项目(2007AA04Z195) 长三角科技联合攻关项目(2011C16040)
关键词 动态矩阵控制 最小二乘相关向量回归 误差补偿 DMC LS-RVR error compensation
  • 相关文献

参考文献8

二级参考文献20

  • 1周德云,佟明安,陈新海.多变量广义预测控制系统的稳定性和鲁棒性[J].西北工业大学学报,1993,11(4):424-430. 被引量:4
  • 2周德云,陈新海,佟明安.自适应广义预测控制系统的鲁棒稳定性分析[J].航空学报,1994,15(7):833-840. 被引量:6
  • 3席裕庚.关于预测控制的进一步思考[J].控制理论与应用,1994,11(2):219-221. 被引量:30
  • 4Wang D F,Han P,Ren Q.Chaos optimization variable arguments PID controller and its application to main steam pressure regulating system[C]//2002 International Conference on Machine, Learning and Cybernetics, Beijing, China, 2002: 2116-2120. 被引量:1
  • 5Kleijnen J P C, Robert G S. A Methodology for Fitting and Validating Metamodels in Simulation[J]. European Journal of Operational Research, 2000, 120(1): 14-29. 被引量:1
  • 6Clarke S M, Griebsch J H, Simpson T W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses[J]. Journal of Mechanical Design, 2005, 127(6): 1077-1087. 被引量:1
  • 7Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. 被引量:1
  • 8Hussain M F, Barton R R, Joshi S B. Metamodeling: Radial Basis Functions, Versus Polynomials[J]. European Journal of Operational Research, 2002, 138(1):142-154. 被引量:1
  • 9Jin Ruichen, Chen Wei, Simpson T W. Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria[J].Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. 被引量:1
  • 10Meckesheimer M, Booker A J, Barton R R, Simpson T W. Computationally Inexpensive Metamodel Assessment Strategies[J]. AIAA Journal, 2002, 40(10): 2053-2060. 被引量:1

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部