期刊文献+

基于群集智能的传感器管理方法研究 被引量:8

Research on Sensor Management Based on Collective Intelligence
下载PDF
导出
摘要 传统传感器管理方法一般采用集中式处理,这种处理方式可能会产生中央节点负荷重和系统通讯压力过大等问题,同时也会因为局部启发式信息的引入而导致了公共悲剧问题。针对以上问题,本文将群集智能理论应用于多传感器管理研究,在以效能函数作为传感器效用函数的基础上,提出了基于群集智能的传感器管理方法。该方法为每个传感器定义个体效用函数,为整个传感器系统定义全局效用函数。群集智能理论保证了在算法迭代过程中通过优化传感器的个体效用而达到优化全局效用的目的。仿真实验表明使用群集智能理论解决传感器管理问题不仅可减轻中央节点负荷、降低系统通讯压力,在提高系统性能的方面也不逊色于其他传感器管理方法。以虚拟传感器网络数据作为实验数据的实验结果表明,本文所提出的方法在传感器的管理性能上,效果优于基于粒子群的传感器管理方法。 The conventional sensor management approach generally uses centralized data processing to deal with the system information.The centralized approach has several issues,such as making the center node overloading,the communication of system being congregated,and it probably will bring out the problem of "tragedy of the commons" because of the introduction of local heuristic information.Against these problems,we suggest to solve the sensor management problem by COIN(collective intelligence) theory.The method of sensor management based COIN proposed in this paper uses efficiency function as sensor utility function.In the sensor management method based COIN,the private energy function is defined for every sensor,while global energy function is defined for whole system.The iterative process of COIN theory ensures the global utility will be best when all of the individuals maximize its private utility.The simulation show that the method proposed in this paper can not only reduce the load of the central node and the communication pressure of system,but also can improve the system performance as well as the other sensor management methods.The compare with the sensor management method based PSO shows that the effect of sensor management proposed in this paper is better than that of PSO method.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第2期155-162,共8页 Acta Armamentarii
基金 国防"十一五"预研资助项目(60673024)
关键词 人工智能理论 群集智能 传感器管理 效能函数 artificial intelligence theory collective intelligence sensor management efficiency function
  • 相关文献

参考文献15

  • 1Xiong N, Svensson P. Multi-sensor management for information fusion: issues and approaches [ J]. Information Fusion, 2002, 3 (2) : 163 -186. 被引量:1
  • 2Mcintyre G, Hintz K. Sensor measurement scheduling: an enhanced dynamic, preemptive algorithm [ J ]. Optical Engineering, 1998, 37: 517. 被引量:1
  • 3Musick S, Malhotra R, Directorate A, et al. Chasing the elusive sensor manager [ C ] // Aerospace and Electronics Conference, NAECON : Proceedings of the IEEE , 1994 : 606 -613. 被引量:1
  • 4刘建雄,梁彦,程咏梅,潘泉,张洪才.多传感器任务分派的快速启发式规划新算法[J].火力与指挥控制,2007,32(1):18-21. 被引量:5
  • 5周林..基于信息论的传感器管理算法研究[D].河南大学,2005:
  • 6Veeramachaneni K, Osadciw L A, Varshney P K. Adaptive multimodal biometric fusion algorithm using particle swarm[ J]. Muhisensor, Multisource Information Fusion : Architectures Algorithms, and Applications, 2003 : 23-25. 被引量:1
  • 7王博,盛卫东,安玮,周一宇,谢恺.基于粒子群优化的传感器管理算法研究[J].信号处理,2009,25(7):1135-1140. 被引量:9
  • 8申章,王俊峰.基于蚁群算法的多传感器目标分配模型[J].计算机应用,2009,29(B06):131-133. 被引量:8
  • 9Hardin G. The tragedy of the commons[ J]. Journal of Natural Resources Policy Research, 2009, 1 (3) : 243-253. 被引量:1
  • 10Wolpert D, Tumer K. An introduction to collective intelligence [EB/OL]. (1999)[2010]. http://arxiv, org/pdf/cs. LG/9908014. 被引量:1

二级参考文献32

共引文献306

同被引文献74

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部