摘要
在外力f= f(x)∈L2 (Ω;Rd ).初值v0 ∈J0 (Ω;Rd ) (d= 2,3)的情形以(dvn /dζ,w k)+ ν(vnx ,w kx )+ b(vn ,vn ,w k)= (f,w k )(k= 1,…,n),vn (0)= (v0,w 1 )w 1 + …+ (v0 ,w n )w n 定义的复的 Галеркин近似证明了二维 Navier-Stokes 方程的弱解和三维Navier-Stokes 方程的由Галеркин近似获得的弱解v(t)可就时间变量延拓成为在复域{Reζ> 0}内解析在{|argζ|≤θ0 <π/2}上有界的在J0 (Ω;Cd )中取值的函数v(ζ).此外,给出了对‖dv/dζ‖的一个估计.
For the two dimensional Navier Stokes equations it is proved that the weak solution can be extended to a time analytical function in the right hand half complex plane Re ζ>0 and its L 2 norm with respect to the space variables is bounded on the angular region {|arg ζ|≤θ 0< π/2} by using the Galerkin approximations v n(ζ) defined by (dv n(ζ)/ d ζ,w k)+ν( v n(ζ),w k)+b( v n(ζ), n(ζ),w k)= (f,w k) (k=1,…,n), v n(0)=(v 0,w 1)+…+(v 0,w n) proveded f=f(x)∈L 2(Ω; R 2), v 0∈J 0(Ω; R 2).In the three dimensional case,the same results are obtained for weak solutions as the limits of the Galerkin approximations.Furthermore,a useful estimate for the time derivative of weak solutions is established.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
2000年第1期1-6,共6页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金!(19571043)