期刊文献+

非连通图Kn,m∪G的优美性研究

Study on Gracefulness of Non-connected Graph K_(n,m)∪G
下载PDF
导出
摘要 对非连通图的优美性进行了研究,给出了几类非连通的并图,得出了如下结论:对任意正整数m,n,设G2n是任一边数为2n的优美图,当1≤n≤m时,非连通图Kn,m∪G2n是优美图;对任意正整数m,n,t,当1≤n≤m,且n≤t时,、非连通图Kn,m∪(C3∨Kt)和Kn,m∪(P3∨Kt)是优美图。 Gracefulness of non-connected graph was studied and types of non-connected union graphs were given.The conclusions were obtained as:For random positive integer m,n,assuming G2n was a graceful graph for edges of 2n,as for 1≤n≤m,non-connected graph Kn,m∪G2n was a graceful graph;for random positive integer m,n,t,as for 1≤n≤m,and n≤t,non-connected graph Kn,m∪(C3∨Kt-) and Kn,m∪(P3∨Kt-) were graceful graphs.
出处 《中国传媒大学学报(自然科学版)》 2011年第4期74-79,共6页 Journal of Communication University of China:Science and Technology
基金 国家自然科学基金资助项目(19801016 10261003)
关键词 优美图 优美标号 非连通图 graph graceful graphs graceful grade unconnected graph
  • 相关文献

参考文献13

二级参考文献21

  • 1杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14
  • 2魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 3严谦泰.图P_(2r,2m)的优美标号[J].系统科学与数学,2006,26(5):513-517. 被引量:23
  • 4Ma Ke—jie(马克杰).Gracefu1 Graph(优美图)[M].Beijing(北京):Peking University Press(北京大学出版,1991.10. 被引量:1
  • 5路线 李秀芬 付彤.The k-Grace Fu11ness and Arithmetic of Grace C8 U St(111)(图C8USt(m)的k一优美性及算术性)[J].Changchun Institute of Post—Te1ecommunication Journa1(邮电学院学报),2000,18(4):17-20. 被引量:1
  • 6Ringel G. Problem 25 in theory of graph and its applications [C]//Proe Symposium Smoleniee. Smoleniee, 1963: 162-167. 被引量:1
  • 7Rosa A. On certain valuations of the vertices of a graph [C]//New York: Gordon and Breach, 1966, Theory of Graphs, Proc International, Symposium, Rome, 1966: 349-355. 被引量:1
  • 8Golomb S W. How to number a graph: graph theory and computing [M]. New York: Academic Press, 1972:23-37. 被引量:1
  • 9Acharya B D, Heged S M. Arithmetic graph[J]. J Theory, 1990,14(3) :275-299. 被引量:1
  • 10Gardner M. Mathematical games[J]. Scientific American, 1972,22(6) : 625-645. 被引量:1

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部