期刊文献+

多源不确定信息融合中的冲突证据快速合成方法 被引量:7

Fast combination method of conflict evidences in multi-source uncertain information fusion
下载PDF
导出
摘要 D-S证据组合规则在处理高冲突信息时,会得出与直觉相反的结论以及证据组合时计算量呈指数增长等问题。针对组合规则的不足,许多改进方法已提出,但各个方法都仍存在其局限性,如Murphy方法在很大程度上解决了冲突证据问题,并未解决计算量指数爆炸问题。基于对Murphy方法深入研究,归纳出相同证据的组合规律,给出了Murphy方法快速表达式,从而提出了一种快速的Murphy组合规则(fast Murphy combinationrule,FMCR)。实验表明,新的组合规则在处理高冲突和多源不确定信息融合问题方面都是有效的,在保持Mur-phy组合规则计算正确性同时,显著地提高了计算速度。 The combination rule of conflict evidences and the required heavy computational load have been the important issues in Dempster-Shafer (D-S) theory. Many improved methods have been proposed, but each of them has their limitations. For example, the Murphy method, though efficient for solving the conflict evidence to a great extent, still leaves the heavy computational load open. On the basis of the research to the Murphy method, the combination law of identical evidences is discovered, and then a fast Murphy combination rule (FMCR) and the related expression are proposed. Experiments show that the new rule can effectively deal with high conflicting evidence and multi-source uncertain information fusion problems with an improvement in speed and accuracy.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第2期333-336,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60975026)资助课题
关键词 D-S理论 指数爆炸问题 高冲突 多源不确定信息融合 D-S theory index exploration problem~ high conflict multi-source uncertain information fusion
  • 相关文献

参考文献15

  • 1Dempster A P. Upper and lower probabilities induced by a mul- tivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2) :325 - 339. 被引量:1
  • 2Sharer G. A mathematical theory of evidence[M]. New Jersey:Princeton University Press, 1976. 被引量:1
  • 3Yager R R. On the Dempster-Shafer framework and new combi- nation rules[J]. Information Sciences, 1987,41(2) :93 - 138. 被引量:1
  • 4Lefevre E, Colot O, Vannoorenberghe P, et al. A Generic framework for resolving the conflict in the combination of belief structures[C]// Proc. of the 3rd International Conference on Information Fusion, 2000:11 - 18. 被引量:1
  • 5孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):116-119. 被引量:442
  • 6Murphy C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000,29 (1) : 1 - 9. 被引量:1
  • 7Jousselem A, Grenier D, Bosse E. A new distance between two bodies of evidence[J]. Information Fusion,2001,2(2):91 - 101. 被引量:1
  • 8郭建全,赵伟,黄松岭.一种改进的D-S证据合成规则[J].系统工程与电子技术,2009,31(3):606-609. 被引量:16
  • 9Zadeh L. On the validity of Dempster's rule of combination of evidence[R]. Berkely: University of California,1979. 被引量:1
  • 10Han D Q, Han C Z, Yang Y. Multi-class SVM classifiers fusion based on evidence combination[C]// Proc. of the International Conference on Wavelet Analysis and Pattern Recognition, 2007 : 579 - 584. 被引量:1

二级参考文献22

  • 1郭华伟,施文康,邓勇,陈智军.证据冲突:丢弃,发现或化解?[J].系统工程与电子技术,2007,29(6):890-898. 被引量:55
  • 2Yager R R. On the Dempster-Shafer framework and new combination rules[J]. Information System, 1989(4) :93 - 137. 被引量:1
  • 3Toshiyuki I. Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory[J]. IEEE Trans. on Reliability, 1991,40 (2) : 182 - 188. 被引量:1
  • 4Dubois D, Prade H. A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets[J]. Int. J. GeneralSyst., 1986, 12: 193-26. 被引量:1
  • 5Takahiko H. Decision rule for pattern classification by integrating interval feature values[J]. Pattern Analysis and Machine Intelligence, 1998, 20 (4) :440 - 447. 被引量:1
  • 6Matsuyama T. Belief formation observation and belief integration using virtual belief space in Dempster-Shafer probability model[C]. Proc. of the IEEE on Multisensor Fusion and Integrating for Intelligent System, Los Vegas, NV, 1994:379 -386. 被引量:1
  • 7Campos F, Cavalcante S. An extended approach for DempsterSharer theory[C]. IEEE, 2003: 338 - 344. 被引量:1
  • 8Liu, Weiru. Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence, 2006, 170(11) : 909 - 924. 被引量:1
  • 9Smets Ph. Decision making in the TBM: the necessity of the pignistic transformation[J]. International Journal of Approximate Reasoning, 2004, 38 : 133 - 147. 被引量:1
  • 10Smets P. Belief Functions. Non-Standard Logics for Automated Reasoning, 1988, 253 - 286. 被引量:1

共引文献486

同被引文献81

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部