期刊文献+

语种识别算法中GSV计算的定点仿真与实现 被引量:1

Fixed-point simulation and realization of GSV used in language recognition
下载PDF
导出
摘要 基于GSV-SVM的语种识别方法是目前最为流行的语种识别方法之一,其采用基于通用背景模型GMM-UBM的GSV作为声学模型,支持向量机SVM作为区分模型。大量仿真测试结果表明,GSV在整个系统中占的运算量为80%左右,是算法硬件实现的瓶颈。鉴于此,对基于GSV的硬件实现方法进行了研究,提出了一种快速GSV定点计算方法,其采用addlog运算简化对数似然函数的计算,完成了语种识别的高效定点实现。实验结果表明,该定点方法的识别率与浮点识别基本一致,满足应用要求。 The language recognition method based on GSV-SVM is the most popular language recognition method.In this method,the GSV(GMM Supervector) based on GMM-UBM(Gaussian mixture model-universal background model) is used as the acoustic model,and SVM(support vector machine) is used to distinguish the model.After a lot of simulations,the computing capacity of GSV account for 80 percent in the system,it's the bottleneck of the algorithm for hardware implementation.Based on that,Hardware implementation method of GSV is studied,fixed-point method is proposed,and the addlog operation is adopted to simplify the log-likelihood function calculation,and an efficient fixed-point implementation of language identification is achieved.The result of experimentation shows that the recognition ratio of fixed-point method is consistent with that of floating point method,and meets the application requirements.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第2期679-683,共5页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2008AA011002)
关键词 语种识别 高斯混合模型-通用背景模型 GMM超矢量 定点实现 addlog运算 language recognition GMM-UBM GSV fixed-point implementation addlog
  • 相关文献

参考文献3

二级参考文献31

  • 1姜洪臣,郑榕,张树武,徐波.基于SDC特征和GMM-UBM模型的自动语种识别[J].中文信息学报,2007,21(1):49-53. 被引量:14
  • 2Smith N, Gales M, Niranjan M. Data-dependent kernels in SVM classification of speech patterns[R]. Tech. Rep. CUED/ F-INFENG/TR. 387, Cambridge University Engineering Department. 2001. 被引量:1
  • 3Campbell W M, Campbell J P, Reynolds D A, et al. Support vector machines for speaker and language recognition[J]. Computer Speech and Language, 2006,20:210-229. 被引量:1
  • 4Li Ming,Sun Hong-bin, Wu Xiao,et al. Spoken language identification using score vector modeling and support vector machine [C]. Proc. Interspeech, 2007,350-353. 被引量:1
  • 5Johnny Mariethoz, Samy Bengio. A kernel trick for sequences applied to text-independent speaker verification systems[J]. Pattern Recognition,August 2007, 40(8) : 2315-23Z4. 被引量:1
  • 6Hans Peter Graf, Eric Cosatto, Leon Bottou ,et al. Parallel support vector machines: the eascade SVM [C]. Proc. NIPS, 2004. 被引量:1
  • 7Singer E, Torres-Carrasquillo P A, Gleason T P, et al. Campbell, acoustic, phonetic, and discriminative approaches to automatic language identification [C]. Proc. Eurospeech 2003, 1345-1348. 被引量:1
  • 8Alvin F Martin, Mark A Przyboekl. NIST 2003 language recog- nition evaluation[C]. Proc. Eurospeech, 2003, 161-164. 被引量:1
  • 9Nello Cristianini, John Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge University Press, 2000. 被引量:1
  • 10Blum T Mitchell. Combining labeled and unlabeled data with cotraining[C]. Proc. Workshop on Computational Learning Theory, 1998, 92-100. 被引量:1

共引文献17

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部