期刊文献+

LATTICE BOLTZMANN METHOD SIMULATIONS FOR MULTIPHASE FLUIDS WITH REDICH-KWONG EQUATION OF STATE 被引量:2

LATTICE BOLTZMANN METHOD SIMULATIONS FOR MULTIPHASE FLUIDS WITH REDICH-KWONG EQUATION OF STATE
原文传递
导出
摘要 In this article we state that the compression factor of the Redlich-Kwong Equation Of State (EOS) is smaller than that of van der Waals EOS. The Redlich-Kwong EOS is in better agreement with experimental data on coexistence curves at the critical point than the van der Waals EOS. We implement the Redlich-Kwong EOS in the Lattice Boltzmann Method (LBM) simulations via a pseudo-potential approach. We propose a new force, which can obtain computational stationary and reach larger density ratio. As a result, multi-phase flows with large density ratio (up to 1012 in the stationary case) can be simulated. We perform four numerical simulations, which are respectively related to single liquid droplet, vapor-liquid separation, surface tension and liquid coalescence of two droplets. In this article we state that the compression factor of the Redlich-Kwong Equation Of State (EOS) is smaller than that of van der Waals EOS. The Redlich-Kwong EOS is in better agreement with experimental data on coexistence curves at the critical point than the van der Waals EOS. We implement the Redlich-Kwong EOS in the Lattice Boltzmann Method (LBM) simulations via a pseudo-potential approach. We propose a new force, which can obtain computational stationary and reach larger density ratio. As a result, multi-phase flows with large density ratio (up to 1012 in the stationary case) can be simulated. We perform four numerical simulations, which are respectively related to single liquid droplet, vapor-liquid separation, surface tension and liquid coalescence of two droplets.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第6期814-819,共6页 水动力学研究与进展B辑(英文版)
基金 supported by the Ministry of Education in China(Grant No. IRT0844) the Shanghai Science and Technology Commission Project of Excellent Academic Leaders (Grant No.11XD1402300)
关键词 Redlich-Kwong equation of state lattice Bhatager-Gross-Krook models numerical simulations phase transition Redlich-Kwong equation of state, lattice Bhatager-Gross-Krook models, numerical simulations, phase transition
  • 相关文献

参考文献4

二级参考文献31

共引文献14

同被引文献17

  • 1Fr'ed'eric C, Arnaud A, Kristina D, et al. Exploring water and other liquids at negative pressure [J]. J Phys Condens Matter, 2012, 24: 284110-284116. 被引量:1
  • 2Vladimir G B, Konstantin S B, Aleksey S T. Cavi- tation and crystallization in a metastable Lennard- Jones liquid at negative pressures and low tempera- tures [J]. J ChemPhys, 2011, 135: 054512. 被引量:1
  • 3Tomoyuki K, Mitsuhiro M. Cavitation processes and negative pressure [ J ]. Fluid Phase Equilibria, 1998, 144: 343-350. 被引量:1
  • 4Kazuki H, Yoshihito O, Yasutoshi T. Stagnations of increasing trends in negative pressure with repeated cavitation in wateronetal Berthelot tubes as a result of mechanical sealing [ J]. J Phys D: Appl Phys, 2003,36 : 592-597. 被引量:1
  • 5Yoshihito O, Hiroshi W, Kazuki H, et al. Raising of negative pressure to around -200 bar for some or- ganic liquids in a metal Berthelet tube [ Jl. J Phys D:Appl Phys, 1993, 26: 1188. 被引量:1
  • 6Trevena D H. Cavitation and the generation of ten- sion in liquids [J]. J Phys D:Appl Phys, 1984, 17 : 2139-2164. 被引量:1
  • 7A Evans. A transparent recording Berthelot tensiom- eter [J]. J Phys E:SciInstrum, 1979, 12: 276. 被引量:1
  • 8Attila R I, Alexandra D R, Thomas K, et al. Non- linear Dielectric Phenomena in Complex Liquids [ M ]. Netherlands: Kluwer Academic Publishers, 2004: 177-189. 被引量:1
  • 9Romana B, M Abdul Basit. Simulation of phase sep- aration process using lattice Boltzmann method [J]. Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering & Medicine, 2010, 1 : 71-76. 被引量:1
  • 10Yikun Wei. Lattice Bohzmann simulations for ther- mal vapor-liquid two-phase flows [J]. Journal of Computational Multiphase Flows, 2011,4: 103-109. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部