期刊文献+

猪瘟病毒基因分型寡核苷酸芯片方法的建立 被引量:2

Establishment of oligonucleotide microarray assay for genotyping of CSFV
原文传递
导出
摘要 根据猪瘟病毒(CSFV)E2基因序列,设计41条针对CSFV 3个基因群共10个亚群各亚群寡核苷酸探针。利用欧盟猪瘟诊断手册推荐的CSFV E2基因套式RT-PCR方法,在内套PCR过程中进行Cy3-dCTP掺入荧光标记,制备芯片杂交样品。用标记的PCR产物与寡核苷酸探针阵列杂交,置于GenePix 4100A扫描仪中扫描,利用Ge-nePix Pro 6.0软件分析杂交图像。特异性和灵敏度试验显示,芯片方法与本室发表的CSFV real-time RT-PCR方法的灵敏度相近,芯片探针与猪繁殖与呼吸综合征病毒(PRRSV)、猪2型圆环病毒(PCV2)、猪伪狂犬病毒(PRV)样品无非特异性杂交。以包括1.1、2.1、2.2、2.3亚群的8份CSF阳性样品进行芯片的检测验证,结果表明,通过特异性的杂交图谱或杂交信号分析可准确判定样品所属的基因亚群,寡核苷酸芯片的检测结果与测序的分型结果全部符合。本研究为将寡核苷酸芯片技术用于猪瘟病毒的基因分型和分子流行病学研究奠定了基础。 Corresponding to the sequence of CSFV E2 gene,41 specific oligonucleotide probes were designed and were used to manufacture the microarray to differentiate 10 subgroups of 3 gene groups of CSFV.The CSFV E2 gene specific nested RT-PCR method recommended by the EU diagnosis manual for CSF was deployed to amplify and label the targets,Cy3-dCTP was incorporated in the inner set PCR.The labelled PCR products were hybridized with the oligonucleotide microarray,the microarray image was captured with GenePix 4100A scanner and analysed with a GenePix Pro 6.0 software.The sensitivity of this assay was equal to the published CSFV real-time RT-PCR method developed by our research group,the oligonucleotide probes did not show cross reaction with PRRSV,PCV2 and PRV nucleic acids.The microarray was applied to test 8 CSF positive samples representing subgroup1.1,subgroup2.1,subgroup2.2 and subgroup2.3.The results showed that genotype of the samples could be determined by hybridization pattern or the analysis of the fluorescent signals.The results of the microarray were the same with that obtained by sequencing.The present study may provide a basis for the further application of oligonucleotide microarray for genotyping of CSFV and molecular epidemiology.
出处 《中国兽医学报》 CAS CSCD 北大核心 2012年第2期177-181,211,共6页 Chinese Journal of Veterinary Science
基金 国家科技支撑计划资助项目(2006BAD06A18)
关键词 猪瘟病毒 寡核苷酸芯片 基因分型 CSFV oligonucleotide microarray genotyping
  • 相关文献

参考文献10

  • 1Meyers G, Thiel H J. Molecular characterization of pestiviruses[J]. Adv Virus Res, 1996,47 : 58-118. 被引量:1
  • 2Lowings J P, Ibata G, Needham I, et al. Classical swine fever virus diversity and evolution[J]. J Gen Virol,1996,77 : 1311-1321. 被引量:1
  • 3Paton D J, McGoldrick A, Greiser-Wilke I, et al. Genetic typing of classical swine fever virus[J]. Vet Microbioi, 2000,73 : 137-157. 被引量:1
  • 4Tu C, Lu Z, Li H, et al. Phylogenetic comparison of classical swine fever virus in China[J]. Virus Res, 2001,81:29-37. 被引量:1
  • 5Deng M C, Huang C C, Huang T S, et al. Phylogenetic analysis of classical swine fever virus isolated from Taiwan[J]. Vet Microbiol, 2005,106 : 187-193. 被引量:1
  • 6Gurrala R, Dastjerdi A, Johnson N, et al. Development of a DNA microarray for simultaneous detection and genotyping of lyssaviruses[J]. Virus Res, 2009,144: 202-208. 被引量:1
  • 7Han X Q,Lin X M,Liu B H,et al. Simultaneously subtyping of all influenza A viruses using DNA microarrays[J]. J Virol Methods, 2008,152 : 117-121. 被引量:1
  • 8Baxi M K, Baxi S, Clavijo A, et al. Microarray-based detection and typing of foot-and-mouth disease virus [J]. Vet J,2006,172:473-481. 被引量:1
  • 9姜永厚,商晗武,徐辉,陈伟杰,丁先锋,赵灵燕.猪瘟病毒基因芯片检测技术的建立与应用[J].浙江农业学报,2009,21(2):85-90. 被引量:4
  • 10史子学,徐兴然,涂长春.用荧光定量RT-PCR方法检测猪瘟病毒[J].中国预防兽医学报,2007,29(6):467-470. 被引量:21

二级参考文献35

  • 1Lowings P, Ibata G, Needham J, et al. Classical swine fever virus diversity and evolution[J]. J Gen Virol, 1996, 77:1311 - 1321. 被引量:1
  • 2Barlic-Maganja D, Grom J. Highly sensitive one-tube RT-PCR and microplate hybridization assay for the detection and for the discrimination of classical swine fever virus from other pestiviruses[J]. J Virol Methods, 2001, 95:101 - 110. 被引量:1
  • 3Handel K, Kehler H, Hills K, et al. Comparison of reverse transcriptase polymerase chain reaction, vires isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strains of classical swine fever virus[J]. J Vet Diagn Invest, 2004, 16: 132- 138. 被引量:1
  • 4Singh VK, Sai Kumar G, Paliwal OP. Detection of classical swine fever virus in archival formalin-fixed tissues by reverse transcription-polymerase chain reaction[J]. Res Vet Sci, 2005, 79:81 - 84. 被引量:1
  • 5Risatti G, Holinka L, Lu Z,et al. Diagnostic evaluation of a realtime reverse transcriptase PCR assay for detection of classical swine fever virus[J]. J Clin Microbiol, 2005, 43:468 -471. 被引量:1
  • 6Depner K, Hoffmann B, Beer M. Evaluation of real-time RT-PCR assay for the routine intra vitarn diagnosis of classical swine fever [J]. Veterinary Microbiology, 2007, 121:338 - 343. 被引量:1
  • 7Wang Z, Vora GJ, and Stenger DA. Detection and genotyping of Entamoeba histolytica, Entamoeba dispar, Giardia lamblia, and Cryptosporidium parvum by oligonucleotide microarray [ J ]. J Clin Microbiol, 2004, 42:3262 - 3271. 被引量:1
  • 8Vydelingum S,Tao T, Balazsi K, et al. Comparison of a reverse transcription-polymerase chain reaction assay and virus isolation for the detection of classical swine fever virus[J]. Rev Sci Tech, 1998,17:674 - 681. 被引量:1
  • 9Thur B, Hofmann MA. Comparative detection of classical swine fever virus in striated muscle from experimentally infected pigs by reverse transcription polymerase chain reaction, cell etdture isolation and immunohistechemistry[J]. J Virol Methods, 1998,74: 47 - 56. 被引量:1
  • 10Choi C, Chae C. Localization of classical swine fever virus from chronically infected pigs by in situ hybridization and immunohistochemistry[J]. Vet Pathol, 2003,40:107- 113. 被引量:1

共引文献23

同被引文献20

  • 1熊红,吴秋业,廖洪利,赵庆杰,侯健.糖基化修饰的树突状细胞疫苗激发的骨髓瘤特异性T细胞免疫反应[J].现代免疫学,2007,27(1):53-58. 被引量:7
  • 2Pharo H,Cobb S P. The spread of pathogens through trade in pig meat., overview and recent developments -J2. Rev Sci Tech,2011,30(1) :139-148. 被引量:1
  • 3McOrist S, Khampee K, Guo A. Modern pig farming in the People's Repuhlie of China growth and veteri nary challenges[J]. Rev Sci Tech,2011,30 (3) : 961 968. 被引量:1
  • 4Sun Y, Tian D Y, Li S, et al. Comprehensive evalua- tion of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever[J]. Vaccine, 2013,31 (3) : 538 544. 被引量:1
  • 5Lin G J,Liu T Y,Tseng Y Y,et al. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response[J]. Vet Microbioi, 2009, 139(3/4) :369-374. 被引量:1
  • 6An H J, Froehlieh J W, Lebrilla C B. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins[J]. Curt Opin Chem Biol, 2009,13 ( 4 ) : 421 426. 被引量:1
  • 7Blom N, Sicheritz-Pont6n T, Gupta R ;et al. Prediction of post-translational glycosylation and phosphoryla- tion of proteins from the amino acid sequence[J]. Pro teomics,2004,4(6) :1633 1649. 被引量:1
  • 8Luong M,Lam J S,Chen J,et al. Effects of fungal N- and O-linked mannosylation on the immunogenicity of model vaccines[J]. Vaccine, 2007,25 (22) : 4340 4344. 被引量:1
  • 9Lain J S, Huang H, Levitz S M. Effect of differentialN-linked and ()-linked mannosylation on recognition of fungal antigens by dendritic cells[J]. PLoS One, 2007,2(10) .. 1009. 被引量:1
  • 10Zhong G,Wang J,Xu M, et al. Enhanced maturation and functionM capacity of dendritic ceils induced by mannosylated L2 domain of ErbB2 receptor[J]. Scand J Immunol,2005,62(2):108 116. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部