摘要
提出一种基于点的快速配准算法。该算法在特征点提取时采用加速分段测试特征算法,通过对比度纹理直方图对特征点进行描述。为加快算法的匹配速度,选用最优节点优先算法进行查找。同时为提高匹配算法的鲁棒性,利用随机抽样一致性算法去除误匹配点对。实验结果表明,与经典的SIFT算法和SURF算法相比,该算法在保持算法稳定性能的同时,可有效提高匹配速度。
A fast registration algorithm based on points is presented.Features from Accelerated Segment Test(FAST) is adopted to extract feature points.Contrast Context Histogram(CCH) is exploited to describe feature points.Best Bin First(BBF) searching algorithm is used to accelerate matching.To improve the robustness of the algorithm,Random Sample Consensus(RANSAC) is utilized to remove the mismatched points.Experimental results show that,compared with other registration algorithm such as SIFT and SURF,the proposed algorithm increases the speed observably while keeping the stability of the algorithm.
出处
《计算机工程》
CAS
CSCD
2012年第1期220-221,224,共3页
Computer Engineering
基金
国家自然科学基金-中国工程物理研究院联合基金资助项目(10676029
10776028)
关键词
加速分段测试特征
对比度纹理直方图
K-D树
最优节点优先
随机抽样一致性
Features from Accelerated Segment Test(FAST)
Contrast Context Histogram(CCH)
K-D tree
Best Bin First(BBF)
Random Sample Consensus(RANSAC)