期刊文献+

基于主成分分析的人脸个体差异识别算法 被引量:10

Recognition Algorithm of Face Individuality Difference Based on Principal Component Analysis
下载PDF
导出
摘要 传统基于主成分分析(PCA)的人脸识别算法不能最优区分不同种类样本。为此,提出一种新的基于PCA的人脸识别算法。利用PCA降维方法提取人脸的个体差异特征,并采用最近邻距离分类器对该特征进行分类。在ORL人脸数据库上的实验结果表明,与传统算法相比,该算法的正确识别率较高。 The Principal Component Analysis(PCA) is not the best method to extract features for recognition because the difference between different kinds is not considered.Aiming at this problem,a new face recognition algorithm based on PCA is proposed.It uses PCA reducing dimensions method to extract the individuality difference.A nearest neighbor classifier is employed to classify the extracted features.The method in the paper is evaluated on the ORL face image database,a series of experiments to compare the proposed approach with traditional PCA method.Experimental results demonstrate the efficacy of the algorithm.
出处 《计算机工程》 CAS CSCD 2012年第1期146-147,共2页 Computer Engineering
关键词 人脸识别 特征提取 个体差异 主成分分析 最近邻分类 face recognition feature extraction individuality difference Principal Component Analysis(PCA) nearest neighbor classification
  • 相关文献

参考文献6

二级参考文献18

  • 1曹林,王东峰,刘小军,邹谋炎.基于二维Gabor小波的人脸识别算法[J].电子与信息学报,2006,28(3):490-494. 被引量:22
  • 2张生亮.单样本多姿态人脸识别研究[J].计算机应用,2006,26(12):2851-2853. 被引量:7
  • 3Wu Jianxin,Zhou Zhihua.Face Recognition with One Training Image Per Person[J].Pattern Recognition Letters,2002,23(14):1711-1719. 被引量:1
  • 4Chen Songcan,Zhang Daoqiang,Zhou Zhihua.Enhanced for Face Recognition with One Training Image Per Person[J].Pattern Recognition Letters,2004,25(10):1173-1181. 被引量:1
  • 5Zhang Daoqiang,Chen Songcan,Zhou Zhihua.A New Face Recognition Method Based on SVD Perturbation for Single Example Image Per Person[J].Applied Mathematics and Computation,2005,163(2):895-907. 被引量:1
  • 6Yang Jian.Zhang D,Yang Jingyu.Two-dimensional PCA:A New Approach to Appearance-based Face Representation and Recognition[J].IEEE PAMI,2004,26(l):131-137. 被引量:1
  • 7Ryu Yeon-Sik,Oh Se-Young.Simple Hybrid Classifier for Face Recognition with Adaptively Generated Virtual Data[J].Pattern Recognition Letters,2002,23(7):833-841. 被引量:1
  • 8Yang Jian, Zhang David, Frangi A F, and Yang Jing-yu. Two-dimensional PCA: A new approach to appearance- based face representation and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137. 被引量:1
  • 9Kong Hui, Wang Lei, and Teoh E K, et al.. A framework of 2D Fisher discriminant analysis: Application to face recognition with small number of training samples. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, United States, 2005 June 20-25, vol. 2: 1083-1088. 被引量:1
  • 10Chellappa R, Wilson C L, and Sirohey S. Human and machine recognition of faces: A survey. Proc. IEEE, 1995, 83(5): 705-740. 被引量:1

共引文献6

同被引文献106

引证文献10

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部