期刊文献+

GLOBAL EXISTENCE,UNIQUENESS,AND STABILITY FOR A NONLINEAR HYPERBOLIC-PARABOLIC PROBLEM IN PULSE COMBUSTION

GLOBAL EXISTENCE,UNIQUENESS,AND STABILITY FOR A NONLINEAR HYPERBOLIC-PARABOLIC PROBLEM IN PULSE COMBUSTION
下载PDF
导出
摘要 A global existence theorem is established for an initial-boundary value prob- lem, with time-dependent boundary data, arising in a lumped parameter model of pulse combustion; the model in question gives rise to a nonlinear mixed hyperbolic-parabolic sys- tem. Using results previously established for the associated linear problem, a fixed point argument is employed to prove local existence for a regularized version of the nonlinear problem with artificial viscosity. Appropriate a-priori estimates are then derived which imply that the local existence result can be extended to a global existence theorem for the regularized problem. Finally, a different set of a priori estimates is generated which allows for taking the limit as the artificial viscosity parameter converges to zero; the corresponding solution of the regularized problem is then proven to converge to the unique solution of the initial-boundary value problem for the original, nonlinear, hyperbolic-parabolic system. A global existence theorem is established for an initial-boundary value prob- lem, with time-dependent boundary data, arising in a lumped parameter model of pulse combustion; the model in question gives rise to a nonlinear mixed hyperbolic-parabolic sys- tem. Using results previously established for the associated linear problem, a fixed point argument is employed to prove local existence for a regularized version of the nonlinear problem with artificial viscosity. Appropriate a-priori estimates are then derived which imply that the local existence result can be extended to a global existence theorem for the regularized problem. Finally, a different set of a priori estimates is generated which allows for taking the limit as the artificial viscosity parameter converges to zero; the corresponding solution of the regularized problem is then proven to converge to the unique solution of the initial-boundary value problem for the original, nonlinear, hyperbolic-parabolic system.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第1期41-74,共34页 数学物理学报(B辑英文版)
关键词 pulse combustion hyperbolic-parabolic system global existence REGULARITY pulse combustion hyperbolic-parabolic system global existence regularity
  • 相关文献

参考文献21

  • 1Terlyga O, Bellout H, Bloom F. A hyperbolic-parabolic system arising in pulse combustion: existence of solutions for the linearized problem, submitted for publication to Diff and Integral Equs. 被引量:1
  • 2Bhaduri D, Baxi C B, Gill B S, Mukhopadhyay N. A theoretical study of pulsating combustion. Indian J Tech, 1968, 6:245-246. 被引量:1
  • 3Gill B S, Bhaduri D. An analysis of helmholtz pulsating combustion systems. Indian J Tech, 1974, 12: 151-153. 被引量:1
  • 4Putnam A A. General survey of pulse combustion//Brown D J, ed. Proc First International Symp Pulse Combustion. Sheffield, England: University of Sheffield, 1971. 被引量:1
  • 5Hadvig S. Pulsating combustion//Brown D J, ed. Proc First International Symp Pulse Combustion. Sheffield, England: University of Sheffield, 1971. 被引量:1
  • 6Winiarski L D. A logically simple method for solving the gas dynamics of a pulsating combustor//Brown D J, ed. Proc First International Symp Pulse Combustion. Sheffield, England: University of Sheffield, 1971. 被引量:1
  • 7Moseley P E, Porter J W. Helmholtz oscillations in pulsating combustion chambers. J Accoust Soc Amer, 1969, 46. 被引量:1
  • 8Clarke P H, Craigen J G. Mathematical model of a pulsating combustor//Proc Sixth Thermodynamics and Fluid Mechanics Convention. Durham, U K, 1976:221-228. 被引量:1
  • 9Ahrens F, Kim C, Tam S-W. Analysis of the pulse combustion burner. ASHRAE Trans, 1978, 84(pt. 2): 488-507. 被引量:1
  • 10Dwyer H A, Bramlette T T, Keller J O, Sanders B R. A numerical model of a pulse combustor//Proceedings of the Tenth International Colloquium on Dynamics of Explosions and Reactive Systems. Berkeley, CA, Aug. 4-9, 1985; also SAND84-8971, Sandia National Laboratories, Livermore, CA. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部