期刊文献+

结构地震反应性态的物理随机最优控制

Physical Stochastic Optimal Control of Seismic Performance of Base-Driven Structures
下载PDF
导出
摘要 本研究发展了结构地震反应性态的随机最优控制理论和方法。这一研究建立在物理随机系统思想的新理论框架下,突破了以I^to随机微分方程描述动力系统的经典随机最优控制的藩篱。提出了基于系统二阶统计量评价、单目标超越概率和多目标能量均衡的控制器参数设计准则,以及基于概率可控指标的控制器位置设计准则,并将它们统一为物理随机最优控制的广义最优控制律。数值算例分析表明,本文发展的物理随机最优控制方法能够实现结构地震反应性态的精细化控制。 A family of optimal control schemes for enhancing seismic performance of randomly base-driven structures is developed in this paper.Its principles are derived from the novel theoretical framework of physical stochastic systems,towards breaking through the barriers inherent in the classical stochastic optimal controls described by Ito[DD(-*3/5]^ stochastic differential equations.Having this knowledge,we proposed three classes of probabilistic criteria associated with parameters of control devices,including the probabilistic criterion in conjunction with system statistics assessment,the probabilistic criterion in conjunction with the exceedance probability of single objective and the probabilistic criterion in conjunction with the energy trade-off of multiple objective.These criteria are logically integrated into the generalized optimal control policy with probabilistic criterion for optimal allocation of control devices based on probabilistic controllability index.Two cases of randomly base-driven structural systems,controlled by active tendons,are investigated for illustrative purposes.The numerical results reveal that the proposed methodology can implement the accurate control of seismic performance of base-driven structures.
作者 彭勇波 李杰
出处 《防灾减灾工程学报》 CSCD 2011年第5期483-489,共7页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学基金委创新研究群体科学基金项目(50621062) 土木工程防灾国家重点实验室探索性研究课题(SLDRCE11-B-04) 同济大学青年优秀人才培养行动计划项目(2010KJ065)资助
关键词 随机最优控制 概率准则 广义最优控制律 能量均衡 随机地震动 stochastic optimal control probabilistic criterion generalized optimal control policy energy trade-off random ground motions
  • 相关文献

参考文献7

二级参考文献58

  • 1陈建兵,李杰.随机结构反应概率密度演化分析的切球选点法[J].振动工程学报,2006,19(1):1-8. 被引量:16
  • 2李杰,艾晓秋.基于物理的随机地震动模型研究[J].地震工程与工程振动,2006,26(5):21-26. 被引量:56
  • 3Wiener N. Extrapolation, interpolation and smoothing of stationary time series, with engineering applications [ M]. Cambridge: The MIT Press, 1949. 被引量:1
  • 4Sperb R P. Maximum principles and their applications [ M]. New York: Academic Press, 1981. 被引量:1
  • 5Bellman R. Dynamic programmining [ M]. Princeton: Princeton University Press, 1957. 被引量:1
  • 6Li J, Chen J B. Probability density evolution method for dynamic response analysis of structures with uncertain parameters [ J ]. Computational Mechanics, 2004, 34(5): 400-409. 被引量:1
  • 7Chen J B, Li J. Dynamic response and reliability analysis of nonlinear stochastic structures [ J]. Probabilistic Engineering Mechanics, 2005, 20 (1): 33-44. 被引量:1
  • 8Li J, Chen J B. Stochastic dynamics of structures [ M ]. lohn Wiley & Sons, 2009. Li J, Peng YB. Stochastic optimal control of earthquake - excited linear systems [ C ]//The 8th Pacific Conference on Earthquake Engineering, Singapore ,2007:5 -7. 被引量:1
  • 9Li J, Peng Y B, Chen J B. A physical approach to structural stochastic optimal controls[J]. Probabilistic Engineering Mechanics, 2010, 25:127 -141. 被引量:1
  • 10Seong T T. Active structural control: Theory and practice [ M]. New York: Longman Scientific & Technical, 1990. 被引量:1

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部