期刊文献+

二维混沌哈密顿体系的逃逸率 被引量:3

On the escape rates of 2D chaotic Hamiltonian systems
原文传递
导出
摘要 研究二维混沌哈密顿体系的逃逸率在逃逸阈值附近的规律.对Hénon-Heiles系统添加一个势垒,通过改变势垒的位置、宽度、高度等参数可以产生一系列混沌体系.对这些体系的逃逸率随体系能量变化的解析公式和数值计算提取的结果一致,并可以用参数化公示表达.在阈值附近,这些体系的逃逸率随能量的增加总是呈现线性关系.结果提供了进一步的证据,证明有光滑开口的二维保守混沌体系的逃逸率随能量线性增加可能是普适结论. We study the escape rates of two dimensional chaotic Hamiltonian systems.A barrier is added to the Hénon-Heiles system to obtain a series of chaotic Hamiltonian systems with varying parameters for the location,the width and the heights of the barrier.The numerical extracted rates for these systems are consistent with the analysis and can be parameterized using simple formulas.Near escaping threshold,the escape rates are all linear in energy.The results provide strong evidences confirming an earlier conjecture that the escape rates of all two dimensional chaotic Hamiltonian systems with smooth openings are linear in energy.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2012年第2期127-133,共7页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:10804066 11074260) 山西省自然科学基金(编号:2009011004) 山西省高等学校优秀青年学术带头人支持计划资助项目
关键词 混沌 逃逸率 庞加莱截面 数值模拟 chaos escape rates poincare surface of sections numerical simulations
  • 相关文献

参考文献16

  • 1Bauer W, Bertsch G F. Decay of ordered and chaotic systems. Phys Rev Lett, 1990, 65:2213-2216. 被引量:1
  • 2Legrand O, Sornette D. First return, transient chaos and decay in chaotic systems. Phys Rev Lett, 1991, 66:2172-2172. 被引量:1
  • 3Doron E, Smilansky U, Frenkel A. Experimental demonstration of chaotic scattering of microwaves. Phys Rev Lett, 1990, 65:3072-3075. 被引量:1
  • 4赵海军,杜孟利.算法对混沌体系逃逸率的影响[J].物理学报,2007,56(7):3827-3832. 被引量:7
  • 5Zhao H J, Du M L. Threshold law for escaping from the Henon-Heiles system. Phys Rev E, 2007, 76(02): 027201. 被引量:1
  • 6Berdichevsky V L, Alberti M V. Statistical mechanics of Henon-Heiles oscillators. Phys Rev A, 1991, 44:858-865. 被引量:1
  • 7Henon M, Heiles C. The applicability of the third integral of motion: Some numerical experiments. Astron J, 1964, 69:73-79. 被引量:1
  • 8Henon M, Heiles C. On constructing formal integrals of a Hamiltonian system near an equilibrium point. Astxophys J, 1966,71 : 670-686. 被引量:1
  • 9Noid D W, Marcus R A. Semiclassical calculation of bound states in a multidimensional system for nearly 1:1 degenerate systems. Chem Phys J, 1977, 67:559-567. 被引量:1
  • 10Zheng Z G, Hu G, Zhang J Y. Ergodic property of a Henon-Heiles model with reflecting walls. Phys Rev E, 1995, 52:3440-3446. 被引量:1

二级参考文献37

共引文献15

同被引文献2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部