期刊文献+

带Stark势非线性Schrdinger方程爆破解的L^p模估计

On the blow-up for nonlinear Schrdinger equation with a Stark potential
下载PDF
导出
摘要 研究带Stark势的临界非线性Schrdinger方程的爆破解.利用Merle和Raphael最近的结果和插值估计,得到了方程爆破解的Lp模的下界估计以及爆破解的集中性质. The blow-up solutions of the Cauchy problem is considered for critical nonlinear Schrdinger equation with a Stark potential.Applying Merle and Raphael's recent results and the interpolation estimate technique,the lower bounds of the Lp norm and the concentration properties of blow-up solutions are obtained.
作者 赵凌
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第1期11-14,共4页 Journal of Northwest Normal University(Natural Science)
基金 可视化计算虚似现实四川省重点实验基金资助项目(J2010N04)
关键词 非线性Schrdinger方程 Stark势 爆破率 Lp模 爆破解 nonlinear Schrdinger equation Stark potential blow-up rate Lp norm bow-up solution
  • 相关文献

参考文献15

  • 1CYCON H L, FROESE R G, KIRSCH W, et al. Schrodinger Operators and Application to Quantum Mechanics and Global Geometry Studied[M]. Texts and Monograghs in Physics. Berlin: Springer- Verlag, 1987. 被引量:1
  • 2LANDAM M J, PAPANICOLAO G C, SULEM C, et al. Rate of blowup for solutions of nonlinear Sehrodinger equation at critical dimension[J]. Phys Rev A, 1988, 38: 3837-3843. 被引量:1
  • 3YAJIAM Y. Existence of solutions for Schrodinger evolution equations[J]. Commun Math Phys , 1987, 110: 415-426. 被引量:1
  • 4De BOUARD A. Nonlinear Schr0dinger equations with magnetic fields [J]. Differential Integral Equations, 1991, 4: 73-88. 被引量:1
  • 5NAKAMURA Y. On nonlinear Schr6dinger equations with Stark effeet[J]. Preprint, 2002. 被引量:1
  • 6CAZENAVE T. Semilinear Schr6dinger Equations [M]. Courant Lecture Notes in Mathematics 10. Now york: AMS, 2003. 被引量:1
  • 7CARLES R, NAKAMURA Y. Nonlinear Schr6dinger equations with Stark potential[J]. Hokkaido Math J, 2004, 33.. 719-729. 被引量:1
  • 8CARLES R. Changing blow-up time in nonlinear Schrodinger equations[J]. Journes Equations Aux Derives Partielles , Forge.eles- Eaux , 2003 : GDR2434. 被引量:1
  • 9LI Xiao-guang, ZHU Shi-hui. Blow-up rate for critical nonlinear Schodinger equation with stark potential[J]. Applicable Analysis, 2008, 87: 303- 310. 被引量:1
  • 10ZHU Shi-hui, LI Xiao-guang. Sharp upper and lower bounds on the blow-up rate for nonlinear Schr6dinger equation with potentia[J]. Appl Math Comput, 2007, 190: 1267-1272. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部