期刊文献+

改进的云自适应粒子群算法 被引量:5

Modified adaptive PSO algorithm based on cloud theory
下载PDF
导出
摘要 为了提高粒子群算法的寻优速度和精度,提出一种改进的云自适应粒子群算法(MCAPSO)。算法中根据粒子适应度值把种群分为三个子群,分别采用不同的惯性权重生成策略和进化策略,普通子群粒子采用云自适应惯性权重,有效地调整了算法的全局与局部搜索能力。选取了五个基准函数进行测试,与其他PSO算法作了比较。仿真结果表明该方法是有效的。 This paper proposes a novel Modified Adaptive Particle Swarm Optimization(MCAPSO)algorithm based on cloud theory to improve the optimum speed and performance of the PSO algorithm.The particles are divided into three groups based on the fitness of the particle in order to adopt different inertia weight generating strategy and evolutionary strategy and effective balance between the local and global search ability is achieved.This paper chooses five reference functions to have a test and compares the results with other PSO algorithms.The simulation results verify the effectiveness of this approach.
作者 张锦华
出处 《计算机工程与应用》 CSCD 2012年第5期29-31,共3页 Computer Engineering and Applications
关键词 粒子群算法 云自适应惯性权重 进化策略 Particle Swarm Optimization(PSO) adaptive inertia weight based on cloud theory evolutionary strategy
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart R C.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Washington DC: IEEE, 1995:1942-1948. 被引量:1
  • 2Arumugam M S, Rao M V C, Chandramohan A.A new and improved version of particle swarm optimization algorithm with global-local best parameters[J].Knowledge and Information Systems,2008,16(3) :324-350. 被引量:1
  • 3Shi Y H,Eberhart R C. A modified particle swarm optimizer[C]// IEEE International Conference on Evolutionary Computation,Anchorage, AK, 1998: 69-73. 被引量:1
  • 4吴秋波,王允诚,赵秋亮,吴昌荣.混沌惯性权值调整策略的粒子群优化算法[J].计算机工程与应用,2009,45(7):49-51. 被引量:19
  • 5韦杏琼,周永权,黄华娟,罗德相.云自适应粒子群算法[J].计算机工程与应用,2009,45(1):48-50. 被引量:46
  • 6易文周,张超英,王强,许亚梅,周金玲.基于改进PSO和DE的混合算法[J].计算机工程,2010,36(10):233-235. 被引量:18
  • 7Zhu Yunfang, Dai Chaohua, Chen Weirong, et al.Adaptive probabilities of crossover and mutation in genetic algorithm based on cloud generators[J].Journal of Computational Information Systems, 2005,1(4) : 671-678. 被引量:1

二级参考文献23

共引文献79

同被引文献54

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部