期刊文献+

弹性分布式缓存动态扩展方法研究 被引量:3

Research on Dynamic Scaling of Elastic Distributed Cache Systems
下载PDF
导出
摘要 对弹性分布式缓存动态扩展机制实现中的关键问题进行了研究。针对动态扩展时的数据重均衡问题,提出了一种适用于异构环境的热点感知的数据重均衡算法(hotspot sensitive data rebalancing algorithm,HSDRA)。该算法同时考虑内存占用和网络流量的均衡,在线识别热点分区,优先确保其在各缓存节点间均衡分布。针对动态扩展时缓存服务的数据一致性和持续可用性保障问题,分别提出了一种基于两阶段请求的数据访问协议和一种受控的数据迁移算法。实验结果表明,该方法能够在保障数据一致性和持续可用性的要求下实现缓存系统的动态扩展,HSDRA算法与未考虑各分区实际负载的加权静态数据重均衡算法相比响应时间更短。 This paper focuses on how to dynamically scale the cache system. Firstly, as to the data rebalancing problem, it proposes a hotspot sensitive data rebalancing algorithm (HSDRA), which can be applied in heterogeneous environment. HSDRA identifies hotspot partitions and gives priority to ensuring their uniform distribution across the cache servers while taking into account both memory footprint and network traffic. Then, as to the problem how to ensure data consistency and continuous availability of cache system in dynamic scaling, it proposes a data access protocol which is based on a two-phase request manner and a controlled data migration algorithm re- spectively. The experimental results show that the proposed approach can enable the cache system to scale dynami- cally under the condition that data consistency and continuous availability are guaranteed, and HSDRA outperforms the weighted static data rebalancing algorithm which doesn't consider actual load on each cache partition.
出处 《计算机科学与探索》 CSCD 2012年第2期97-108,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61173003 国家重点基础研究发展规划(973)No.2009CB320704 国家科技重大专项"核高基"项目No.2011ZX03002-002-01~~
关键词 分布式缓存 动态扩展 热点数据 数据迁移 distributed cache dynamic scaling hotspot data migration
  • 相关文献

参考文献12

  • 1Earls A. Distributed data grids: foundation for future cloud computing?[EB/OL]. (2010)[2011-06]. http://search soa.techtarget.com/news/1518647/Data-Grids-Foundation- for-future-cloud-computing. 被引量:1
  • 2Oracle. Platform-as-a-service private cloud with Oracle fusion middleware[EB/OL]. (2009)[2011-06]. http://www oracle.corn/us/technologies/cloud/036500.pdf. 被引量:1
  • 3Gualtieri M, Rymer J R. The Forrester wave: elastic caching platforms, Q2[EB/OL]. (2010)[2011-06]. ftp://ftp.boulder. ibm.corn/so ftware/solutions/soa/pd fs/wave_elastic_caching_ platforms_q2_2010.pdf. 被引量:1
  • 4Decandia G, Hastorun D, Jampani M, et al. Dynamo: Amazon's highly available key-value store[J]. ACM SIGOPS Operating Systems Review, 2007, 41(6): 205-220. 被引量:1
  • 5Krishnamurthy B, Wills C E. Piggyback server invalida- tion for proxy cache coherency[C]//Proceedings of the 7th International Conference on World Wide Web, Brisbane, Australia, April 1998. Amsterdam, The Netherlands: Elsevier Science Publishers, 1998: 185-193. 被引量:1
  • 6Zhang Wenbo, Wang Sa, Wang Wei, et al. Bench4Q: a QoS-oriented E-commerce benchmark[C]//Proceedings of the 35th IEEE Annual Computer Software and Appli- cations Conference, Munich, 2011: 38-47. 被引量:1
  • 7Chiu D, Shetty A, Agrawal G. Elastic cloud caches for accelerating service-oriented computations[C]//Proceed- ings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC '10), New Orleans, LA, 2010. 被引量:1
  • 8Washington, DC, USA: 1EEE Computer Society, 2010: 1-11. Chiu D, Agrawal G. Flexible caches for derived scientific data over cloud environments[R]. The Ohio State Univer- sity, 2009. 被引量:1
  • 9Chiu D, Agrawal G. Auspice: automatic service planning in cloud/grid environments[M]//Grids, Clouds and Virtu- alization: Computer Communications and Networks. London: Springer, 2011: 93-121. 被引量:1
  • 10Karger D, Lehman E, Leighton, et al. Consistent hashing and random trees: distributed caching protocols for re- lieving hot spots on the World Wide Web[C]//Proceedings of the 29th Annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM, 1997: 654-663. 被引量:1

同被引文献36

  • 1杨武军,张继荣,屈军锁.内存数据库技术综述[J].西安邮电学院学报,2005,10(3):95-99. 被引量:39
  • 2沈斌,蒋昌俊,章昭辉,郑春雷,刘海涛.一种基于海量GPS数据的分布式地图匹配系统的设计与实现[J].小型微型计算机系统,2007,28(3):479-481. 被引量:3
  • 3袁培森,皮德常.用于内存数据库的Hash索引的设计与实现[J].计算机工程,2007,33(18):69-71. 被引量:21
  • 4十二五智能交通规划,打造物联网十倍商机[EB/OL].(2011-10-19)[2012-05-10].http://www.chinadaily.com.cn/mic-to-reading/tech/2011-10-19/content_4107623.htm. 被引量:1
  • 5Wikipedia. Cloud computing [EB/OL]. [2012-05-05]. http:// en. wikipedia, org/wiki/Cloud_computing. 被引量:1
  • 6DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters [ J]. Communications of the ACM, 2008, 51 (1) : 107 - 113. 被引量:1
  • 7MARZ N, WARREN J. Big data: principles and best practices of scalable realtime data systems [ M]. Greenwich: Manning Publica- tions, 2012:1-28. 被引量:1
  • 8NoSQL. Wikipedia [ EB/OL]. [2012-04-07]. http://en. wikipedia, org:,/wikiJNoSQL. 被引量:1
  • 9秦秀磊,张文博,魏峻,等.云计算环境下分布式缓存技术的现状与挑战[EB/OL].[2012-03-16].http://www.jos.org.cn/ch/reader/createpdf.aspx?file_no=4276. 被引量:1
  • 10BAIN W L. Distributed, in-memory data grids accelerate map/re- duce analysis [ EB/OL ]. [2012-05-08]. http://www. codeproject, corn/Articles/378117/Distributed-ln-Memory-Data- Grids-Accelerate-Map-Re. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部