期刊文献+

Combustion and energy balance of aluminum holding furnace with bottom porous brick purging system 被引量:3

Combustion and energy balance of aluminum holding furnace with bottom porous brick purging system
下载PDF
导出
摘要 For acquiring the details in aluminum holding furnace with bottom porous brick purging system,efforts were performed to try to find out the potential optimal operation schemes.By adopting transient analysis scheme and constant boundary temperature,combustion in the furnace was investigated numerically using computational fluid dynamics(CFD).The predicted gas temperature shows good agreement with the measured results,and the predicted energy distribution of the furnace is consistent with that obtained from energy balance experiment,which confirms the reliability of the numerical solution.The results show that as the fuel-air mixture temperature rises up from 300 K to 500 K,the energy utilization of the furnace could increase from 34.55% to 37.14%.However,as the excess air coefficient increases from 1.0 to 1.4,energy utilization drops from 34.55% to 29.56%.Increasing the combustion temperature is the most effective way to improve the energy efficiency of the furnace.High reactant temperature and medium excess air coefficient are recommended for high operation performance,and keeping the furnace jamb sealed well for avoiding leakage has to be emphasized. For acquiring the details in aluminum holding furnace with bottom porous brick purging system, efforts were performed to try to find out the potential optimal operation schemes. By adopting transient analysis scheme and constant boundary temperature, combustion in the furnace was investigated numerically using computational fluid dynamics (CFD). The predicted gas temperature shows good agreement with the measured results, and the predicted energy distribution of the furnace is consistent with that obtained from energy balance experiment, which confirms the reliability of the numerical solution. The results show that as the fuel-air mixture temperature rises up from 300 K to 500 K, the energy utilization of the furnace could increase from 34.55% to 37.14%. However, as the excess air coefficient increases from 1.0 to 1.4, energy utilization drops from 34.55% to 29.56%. Increasing the combustion temperature is the most effective way to improve the energy efficiency of the furnace. High reactant temperature and medium excess air coefficient are recommended for high operation performance, and keeping the furnace jamb sealed well for avoiding leakage has to be emphasized.
作者 ZHANG Jia-qi ZHOU Nai-jun ZHOU Shan-hong 张家奇;周乃君;周善红(School of Energy Science and Engineering,Central South University,Changsha 410083,China;College of Aerospace and Material Engineering,National University of Defense Technology,Changsha 410073,China;Shenyang Aluminum and Magnesium Engineering and Research Institute,Shenyang 110001,China)
出处 《Journal of Central South University》 SCIE EI CAS 2012年第1期200-205,共6页 中南大学学报(英文版)
基金 Project(2009GK2009) supported by the Science and Technology Program of Hunan Province,China
关键词 aluminum holding furnace COMBUSTION FLOW numerical study computational fluid dynamics 净化系统 燃烧炉 多孔砖 能源平衡 底部 计算流体动力学 能源利用率 过剩空气系数
  • 相关文献

参考文献15

  • 1PRILLHOFER B, ANTREKOWITSCH H, BOTTCHER H. Optimisation of the melt quality in casting/holding furnaces [C]// DEYOUND D H. Light Metals 2008. Warrendale: TMS, 2008: 627-632. 被引量:1
  • 2MIGCH1ELSIN I J, HANS-WALTER-GRAB D I, SCHMIDT T. Design considerations for holding and casting furnaces [C]// DEYOUND D H. Light Metals 2008. Warrendale: TMS, 2008: 593-596. 被引量:1
  • 3GAMWEGER K, BAUER P. Energy savings and productivity increases at an aluminum slug plant due to bottom gas purging [C]// NEELAMEGGHAM N R, REDDY R G., BELT C K, VIDAL E E. Energy Technology Perspectives. Warrendale: TMS, 2009: 169-171. 被引量:1
  • 4LARSEN D A. Degassing aluminum using static fine-pore refractory diffusers [J]. JOM, 2007, 49(8): 27-28. 被引量:1
  • 5BUI R T, PERRON J. Performance analysis of the aluminum casting furnace [J]. Metall Trans B, 1987, 19(2): 171-180. 被引量:1
  • 6OUTLLET R, BUI R T, PERRON J. Numerical simulation of a casting furnace [J]. Simulation, 1990, 54(2): 92-100. 被引量:1
  • 7BUI R T, PERRON J. Optimal control of an aluminum casting fumace: Part I. The control model [J]. Metall Trans B, 1990, 21(3): 487-494. 被引量:1
  • 8BUI R T, PERRON J. Optimal control of an aluminum casting furnace: Part II. Fuel optimization [J]. Metall Trans B, 1990, 21(3): 495-500. 被引量:1
  • 9BOURGEOIS T, BUI R T, CHARETTE A, KOCAEFE Y S. Mathematical modeling of an aluminum casting furnace combustion chamber [J]. Metall Trans B, 1989, 20(3): 421-429. 被引量:1
  • 10NIECKELE A O, NACCACHE M F, GOMES M S P. Numerical modeling of an industrial aluminum melting furnace [J]. J Energy Resour Technol, 2004, 126( 1): 72-81. 被引量:1

二级参考文献6

共引文献7

同被引文献26

  • 1周善红.铝保温炉气体搅拌下熔体流场和温度场数值模拟研究[J].轻金属,2011(S1):256-260. 被引量:2
  • 2赵忠兴,金光,张显飞,王松涛,王连琪.铝液从熔化到浇注过程的质量变化及分析[J].铸造技术,2005,26(3):230-232. 被引量:10
  • 3Chen Chong, Wang Jun, Shu Da, et al. Removal of non-metallic inclusions from aluminum by electroslag refining [J]. Materials Transactions, 52 (12): 2266-2269. 被引量:1
  • 4He Yanjie, Li Qiulin, Liu Wei. Effect of combined magnetic field on the eliminating inclusions from liquid aluminum alloy [J]. Materials Letters, 65 (8): 1226-1228. 被引量:1
  • 5Zhang Lifeng, Lv Xuewei, Torgerson Alex Tryg, et al. Removal of impurity elements from molten aluminum: A review [J]. Mineral Prccessing and Extractive Metallurgy Review, 2011, 32 (3) : 150-228. 被引量:1
  • 6Zhang Jiaqi, Zhou Naijun, Zhou Shanhong. Numerical simulation on melt flow with bubble stirring temperature field in aluminum holding furnace [J]. J. of Cent. South Univ. of Tech. (English Edition), 2011, 18 (5) : 1726-1732. 被引量:1
  • 7Zhou Naijun, Zhou Shanhong, Zhang Jiaqi, et al. Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer [J]. Journal of Central South University of Technology (English Edition) , 2010, 17 (6) : 1389-1394. 被引量:1
  • 8Pauty E, Laboudigue B, Etay J. Numerical simulation of the flow and the solid transport when tilting a holding furnace[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31 (1) : 207-214. 被引量:1
  • 9Golchert B M, Metwally H, Kumar A. Computational anlalysis of the conversion of a generic aluminum holding furnace from air-fired to oxy-fired burners [C]//Light Metals 2006.Warrendale, PA, USA: TMS, 2006: 733-736. 被引量:1
  • 10Zhao Yuqing, Yah Liang. Temperature prediction of RCC based on partial least-squares regression [J]. Energy Procedia, 17 (part A) : 326-332. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部