期刊文献+

基于PSO和属性约减的模糊神经网络机床故障诊断

Machine Fault Diagnose of Fuzzy Neural Network Based on Particle Swarm Optimization and Attribute Restriction
下载PDF
导出
摘要 数控机床伺服系统工作原理复杂。为了提高智能故障诊断的准确性,提出基于PSO理论和属性约束规则(RSM)的模糊神经网络算法。先对训练样本进行属性约减;由于PSO算法具有全局优化能力和BP算法具有局部搜索效率高的优点,利用它们训练神经网络,克服了传统方法收敛速度慢的缺点;并通过Matlab仿真证明,该方法具有较高的诊断准确性。 CNC machine tool has a servo system with complex working principles. In order to improve the intelligent diagnose precision, a fuzzy neural network (FNN) algorithm based on particle swarm optimization (PSO) theory and attribute restriction predigesting method (RSM) was proposed for CNC machine fault diagnose. The training samples were predigested with attribute restriction, then the FNN was trained with the method composed of the PSO and BP, for making an exertion of advantages from both the global optimization of PSO and local accurate searching of BP, and the slow convergence shortage of the tradition learning algorithm was overcome. It is proved that the method has better diagnose accuracy through Matlab emulator.
作者 陈磊
出处 《机床与液压》 北大核心 2012年第1期169-171,共3页 Machine Tool & Hydraulics
关键词 模糊神经网络 粒子群 反向传播 机床故障诊断 Fuzzy neural network Particle swarm optimization Back propagation Machine tool fault diagnose
  • 相关文献

参考文献8

  • 1Li Y C, Fu J Z, Yao X H. Research on Remote Intelligent Fault Diagnosis of CNC Machine Tools and Realization of its Software [ J ]. Key Engineering Materials, 2010,426/ 427 : 254 - 259. 被引量:1
  • 2YU Shiwei, ZHU Kejun, DIAO Fengqin. A Dynamic All Pa- rameters Adaptive BP Neural Networks Model and Its Ap- plication on Oil Reservoir Prediction [ J ]. Applied Mathe- matics and Computation January,2008,195 ( 1 ) : 66 - 75. 被引量:1
  • 3YUMUSAK N, TEMURTAS F, GUNTURKUN R. Harmonic Detection Using Neural Networks with Conjugate Gradient Algorithm [ C ]//LNAI, 2004 : 304 - 311. 被引量:1
  • 4VAN DEN BERGH F, ENGELBRECHT A P. Cooperative Learning in Neural Networks Using Particle Swarm Optimi- zer[ J ]. South African Computer Journal, 2000,26 : 84 - 90. 被引量:1
  • 5ZHAO Liang, QIAN Feng. Tuning the Structure and Param- eters of a Neural Network Using Cooperative Binary-real Particle Swarm Optimization [ J ] Expert Systems with Ap- plications ,2011,38 ( 5 ) :4972 - 4977. 被引量:1
  • 6TSANG E C C, WANG X Z, YELTNG D S. Improving Learning Accuracy of Fuzzy Decision Trees by Hybrid Neu- ral Networks [ J ]. IEEE Trans on Fuzzy Systems, 2000,8 (5) :337 -342. 被引量:1
  • 7姚敏强主编..数控机床故障诊断与维修技术[M].北京:电子工业出版社,2007:275.
  • 8VAN DEN BERGH F, ENGELBRECHT A P. Training Product Unit Networks Using Cooperative Particle Swarm Optimizers [ C 3// Proc IJCNN 2001, Washington DC, USA,2001:126 - 132. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部