期刊文献+

基于时间序列分析与高阶统计矩的结构损伤检测 被引量:11

Damage detection based on time series analysis and higher statistical moments
下载PDF
导出
摘要 基于时间序列分析,提出一种有效检测结构非线性损伤的方法.在分析基于AR模型残差均方差指标的基础上,指出传统方法存在损伤信息泄漏的缺陷,特别是对于非线性损伤检测.为提高传统方法损伤检测结果的可靠性,提出采用残差的高阶统计矩———偏度和峰度作为传统指标的补充,提出了3个指标的算术平均和几何平均共6种综合指标,并应用模糊聚类分析实现结构损伤检测.利用考虑了环境因素影响的三层建筑结构模型的非线性损伤实验数据验证了提出的方法.研究表明,6种综合指标对非线性损伤检测的可靠性均高于传统方法,其中以均方差和峰度的几何平均指标检测效果最佳. Based on time series analysis,a new efficient nonlinear damage detection method is proposed in this paper. The traditional methods,in which the standard deviation of autoregressive(AR) model residual error is defined as damage sensitive index,may have the shortage of damage information loss,especially for the detection of the nonlinear damage.To improve the reliability of the traditional methods for the detection of the nonlinear damage,the higher statistical moments of residual error,such as skewness and kurtosis,are further defined as the complementary damage features to the standard deviation.Six comprehensive damage indexes are developed based on the arithmetic and geometric mean of the statistical moments,and are classified by using fuzzy clustering method to achieve damage detection.A series of the experimental data from a three-story building structure considering the environmental variety are analyzed to validate the viewpoints in this paper.The results from all six new damage indexes show higher reliability than those from traditional methods,and the index obtained from geometric mean of standard deviation and kurtosis has the best performance for all the six damage indexes.
作者 朱军华 余岭
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期137-143,共7页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(50978123 11032005) 广东省自然科学基金资助项目(10151063201000022) 中央高校基本科研业务费专项资金资助项目(21611512)
关键词 时间序列分析 峰度 偏度 结构损伤检测 time series analysis kurtosis skewness structural damage detection
  • 相关文献

参考文献15

  • 1Fugate M L, Sohn H, Farrar C R. Vibration-based damage detection using statistical process control [ J ]. Mechanical Systems and Signal Processing, 2001, 15.(4) : 707 -721. 被引量:1
  • 2Sohn H, Farrar C R. Damage diagnosis using time se- ries analysis of vibration signals [ J ]. Smart Materials & Structures, 2001, 10(3): 1 -6. 被引量:1
  • 3Sohn H, Farrar C R, Hunter N F, et al. Structural health monitoring using statistical pattern recognition techniques [ J ]. Journal of Dynamic Systems, Measure- ment, and Control, 2001, 123(4): 706-712. 被引量:1
  • 4da Silva S, Dias Jfnior M, Lopes Junior V. Damage detection in a benchmark structure using Ar-Arx models and statistical pattern recognition [ J ]. Journal of the Brazilian Society of Mechanical Sciences and Engineer- ing, 2007, 29(2) : 174 - 184. 被引量:1
  • 5Lu Y, Gao F. A novel time-domain auto-regressive model for structural damage diagnosis [ J ]. Journal of Sound and Vibration, 2005, 283 ( 3/4/5 ) : 1031 - 1049. 被引量:1
  • 6Sohn H, Worden K, Farrar C R. Statistical damage classification under changing environmental and opera- tional conditions [ J ]. Journal of Intelligent Material Systems &Structures, 2002, 13(9) : 561 -574. 被引量:1
  • 7Farrar C R, Lieven N A J. Damage prognosis: the fu- ture of structural health monitoring [ J ]. Philosophical Transactions of the Royal Society A, 2007, 365 (1851) : 623 -632. 被引量:1
  • 8Worden K, Allen D W, Sohn H, et al. Extreme value statistics for damage detection in mechanical structures [ R ]. Los A/amos, New Mexico: Los A/amos NationalLaboratory, 2002. 被引量:1
  • 9Carden E Peter, Brownjohn J M W. Arma modelled time-series classification for structural health monitoring of civil infrastructure[ J]. Mechanical Systems and Sig- nal Processing, 2008, 22 (2) : 295 - 314. 被引量:1
  • 10范剑青,姚琦伟著,陈敏译..非线性时间序列 建模、预报及应用[M].北京:高等教育出版社,2005:408.

同被引文献96

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部