期刊文献+

基于大规模廉价计算平台的海量数据处理系统的研究 被引量:13

Mass data processing system based on large-scale low-cost computing platform
下载PDF
导出
摘要 提出一种基于大规模廉价计算平台的海量数据处理模型,吸取了Map/Reduce计算模式和大规模分布式数据存储机制Bigtable的基本思想,实现了以数据为中心的计算密集型的经济性超级计算系统平台。系统选择电信部门的大规模业务数据为分析对象,对电信通话和数据业务的大规模数据集进行处理,从而向运营商和普通用户提供有价值的数据分析服务。该平台适用于其他多种海量数据的分布式处理,为其他的各种应用提供了一个具有良好参考价值的示范。 This paper proposed a new mass data processing model based on large-scale low-cost computing platform,drawing on the basic idea of Map/Reduce the distributed computing model and Bigtable the large-scale data storage mechanism to achieve a data-center and computing-intensive economy supercomputing system platform.The system chose the business data of telecommunications as its analysis object,processing the large data sets of voice and data services.The system is suitable for processing other kinds of mass data,which provides valuable analysis services for telecom operators and ordinary users and offers a good reference model to other applications.
出处 《计算机应用研究》 CSCD 北大核心 2012年第2期582-585,共4页 Application Research of Computers
基金 国家"973"计划资助项目(2011CB302903) 国家自然科学基金资助项目(60873231) 高等学校博士学科点专项科研基金资助项目(20093223120001) 江苏省科技支撑计划资助项目(BE2009158) 江苏省高校自然科学研究资助项目(09KJB520010) 信息安全国家重点实验室开放项目(03-01-1) 江苏省自然科学基金资助项目(BK2011754 BK2009426) 江苏高校优势学科建设工程资助项目(yx002001) 中国博士后科学基金资助项目(2011M500095) 江苏省博士后科研资助计划项目(1102103C)
关键词 分布式计算 数据处理 云计算 电信 distributed computing data processing cloud computing telecommunications
  • 相关文献

参考文献8

二级参考文献63

  • 1....http://www.napster.com,,.. 被引量:5
  • 2Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss 被引量:1
  • 3Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf 被引量:1
  • 4Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403. 被引量:1
  • 5Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11. 被引量:1
  • 6Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28. 被引量:1
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117. 被引量:1
  • 8Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43. 被引量:1
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150. 被引量:1
  • 10Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350. 被引量:1

共引文献1312

同被引文献70

  • 1李文军.计算机云计算及其实现技术分析[J].军民两用技术与产品,2018,0(22):57-58. 被引量:15
  • 2彭宏,杜楠.基于并行数据库的海量商务数据管理系统研究[J].计算机应用研究,2009,26(2):614-616. 被引量:3
  • 3周德群.系统工程概论[M].2版.北京:科学出版社,2010. 被引量:3
  • 4盛骤,谢式千,潘承毅,等.概率论与数理统计[M].4版.北京:高等教育出版社,2010:76-79. 被引量:17
  • 5方骥,梁才.Excel2010应用大全[M].北京:人民邮电出版社,2011:341-372. 被引量:1
  • 6Zaharia M, Borthakur D, Sen S:anna J, et ak Delay scheduling: A simple technique for achieving locality and fairness in duster scheduling [C] //Proceedings of the 5th European Conference on Computer Systerr: New York: ACM, 2010: 265-278. 被引量:1
  • 7Isard M, Prabhakaran V, Currey J, et al. Quincy: Fair scheduling for distributed computing clusters [C] //Procee- dings of the 22nd Symposium on Operating Systems Principles: New York: ACM, 2009.. 261-276. 被引量:1
  • 8Dean J, Ghernawat S. MapReduce: Simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51 (1) : 107-113. 被引量:1
  • 9You H H, Yang C C, Huang J L. A load-aware scheduler for MapReduce framework in heterogeneous cloud environments [C] //Proceedings of the 2011 ACM Symposium on Applied Computing. New York: ACM, 2011: 127-132. 被引量:1
  • 10Fischer M J, Su X, Yin Y. Assigning tasks for efficiency in Hadoop [C] //Proceedings oi the 22nd ACM Symposium on Parallelism in Algorithms and Architectures. New York: ACM, 2010: 30-39. 被引量:1

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部