期刊文献+

边界对齐的平滑三维对称标架场 被引量:2

Boundary Aligned Smooth 3DCross-Frame Field
下载PDF
导出
摘要 为了把广泛应用于网格四边形化和纹理合成的二维表面标架场拓展到三维,提出一种生成三维对称标架场的方法.不同于表面对称标架场(四对称方向场),二维标架场的对称性能用一个切平面的旋转角度来表示,而三维对称标架场的对称性却不能这样简单地表示.为了解决这个问题,利用球面函数来获得一个对称性表述,该表述对于绕任意一个轴的π?2旋转以及它们的复合是不变的.基于球面函数的表示可以获得一个有效的标架场光顺程度的度量,并以球面调和分析进行加速计算;基于一组边界约束,可以通过极小化这个度量函数来获得一个光顺的标架场,该标架场在表面上能很好地对齐法线.最后通过表面投影、流线追踪和奇异点来可视化这个标架场,并将这个光顺的标架场用于六面体网格生成,且讨论了它在生成高质量纯六面体网格方面的潜力,其与表面标架场在生成四边形网格方面的潜力是一致的. In this paper,we present a method for constructing a 3D cross-frame field,a 3D extension of the 2D cross-frame field as applied to surfaces in applications such as quadrangulation and texture synthesis.In contrast to the surface cross-frame field(equivalent to a 4-way rotational-symmetry vector field),symmetry for 3D cross-frame fields cannot be formulated by simple one-parameter 2D rotations in the tangent planes.To address this critical issue,we represent the 3D frames by spherical harmonics,in a manner invariant to combinations of rotations around any axis by multiples of π/2.With such a representation,we can formulate an efficient smoothness measure of the cross-frame field.Through minimization of this measure under certain boundary conditions,we can construct a smooth 3D cross-frame field that is aligned with the surface normal at the boundary.We visualize the resulting cross-frame field through restrictions to the boundary surface,streamline tracing in the volume,and singularities.We also demonstrate the application of the 3D cross-frame field to producing hexahedron-dominant meshes for given volumes,and discuss its potential in high-quality hexahedralization,much as its 2D counterpart has shown in quadrangulation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第2期137-139,共3页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2009CB320801) 国家自然科学基金(60933007 61170139) 美国国家科学基金会项目(IIS0953096 CCF0936830 0811313 CMMI0757123)
关键词 六面体 球面调和函数 N-旋转对称标架场 hexahedral spherical harmonics N-RoSy frame field
  • 相关文献

参考文献9

  • 1Bommes D, Zimmer H, Kobbelt I.. Mixed-integer quadrangulation [J]. ACM Transactions on Graphics, 2009, 28(3) : Article No. 77. 被引量:1
  • 2Zhang M, Huang J, Liu X, et al. A wave-based anisotropic quadrangulation method [J]. ACM Transactions on Graphics, 2010, 29(4): 118:1-118:8. 被引量:1
  • 3Palacios J, Zhang E. Rotational symmetry field design on surfaces[J]. ACM Transactions on Graphics, 2007, 26(3): Article No. 55. 被引量:1
  • 4Ray N, Vallet B, Li W C. et al. N-symmetry direction field design [J]. ACM Transactions on Graphics, 2008, 27 (2) 10:1-10:13. 被引量:1
  • 5Cook W, Oakes W. Mapping methods for generating three-dimensional meshes[J]. Computers in Mechanical Engineering, 1982,1 (1) : 67-72. 被引量:1
  • 6Carbonera C D, Shepherd J F. A constructive approach to constrained hexahedral mesh generation [J]. Engineering with Computer, 2010, 26(4): 341-350. 被引量:1
  • 7Huang J, Tong Y Y, Wei H Y, et al. Boundary aligned smooth 3D cross-frame field [J]. ACM Transactions on Graphics, 2011, 30(6 ) : Article No. 143. 被引量:1
  • 8Green R. Spherical harmonic lighting: the gritty details [OL]. [2011-12-28]. http://www, research, scea. com/gdc2003/ spherical-harmonic-lighting, pdf. 被引量:1
  • 9Palacios J, Zhang E. Interactive visualization of rotational symmetry fields on surfaces [J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(7): 947-955. 被引量:1

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部