期刊文献+

动态多文档文摘模型 被引量:9

Dynamic Multi-Document Summarization Model
下载PDF
导出
摘要 从网络信息的动态演化性出发,对同一话题不同时序阶段的文档集合进行识别和分析,在度量演化内容差异性的基础上实现动态性,给出了两种实现动态多文档文摘的模型,即基于矩阵子空间分析和基于文本相似度累加的动态多文档文摘模型.在此基础上,提出了高效的动态句子加权方法.TAC 2008的Update Summarization测试数据上的实验证明了所提出的动态多文档文摘模型的有效性. This paper introduces two models to describe dynamic evolution of network information: identify and analysis the document collection on the same topic in different stages. In order to construct dynamic of evolution content differences, two dynamic multi-document summarization models are presented, which are matrix subspace analysis model, text similarity cumulative model. Based on these models, some efficient dynamic sentence weighting algorithms are implemented. Experiments on the test data of Update Summarization in TAC 2008 and comparative results between new models and TAC 2008 evaluation, shows the effectiveness of the models.
出处 《软件学报》 EI CSCD 北大核心 2012年第2期289-298,共10页 Journal of Software
基金 国家自然科学基金(60736014 60773069 61073130) 国家高技术研究发展计划(863)(2006AA010108)
关键词 多文档文摘 差异性分析 矩阵模型 相似度累加 动态演化 multi-document summarization otherness analysis matrix model similarity cumulative dynamic evolvement
  • 相关文献

参考文献15

  • 1Mani I. Automatic Summarization. John Benjarnins Publishing Company, 2001. 被引量:1
  • 2Zhang S, Zhao TJ, Yu H, Zhao H. The research on the influence of the types of document sets on multi-document summarization. Journal of Computational Information Systems, 2007,3(3):1201-1206. 被引量:1
  • 3Dang HT, Owczarzak K. Overview of the TAC 2008 Update Summarization Task. In: Proc. of the Text Analysis Conf. 2008. 被引量:1
  • 4Allan J, Jin H, Rajman M, Wayne C, Gildea D, Lavrenko V, Hoberman R, Caputo D. Topic-Based novelty detection. Technical Report, ws99, Baltimore: Center for Language and Speech Processing, Johns Hopkins University, 1999. 被引量:1
  • 5Allan J, Papka R, Lavrenko V. On-Line new event detection and tracking. In: Proc. of the 21st Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. Melbourne, 1998.37-45. [doi: 10.1145/290941.290954]. 被引量:1
  • 6Mani I. Recent developments in temporal information extraction. In: Nicolov N, Mitkov R, eds. Proc. of the RANLP. 2004. 被引量:1
  • 7http://projects.ldc.upenn.edu/ace/intro.html. 被引量:1
  • 8Makkonen J. Investigations on event evolution in TDT. In: Proc. of the Student Workshop of Human Language Technology Conf. of the North American Chapter of the Association for Computational Linguistics. Edmonton, 2003. 43-48. Idol: 10.3115/1073416. 1073424]. 被引量:1
  • 9Mani I, Wilson G. Robust temporal processing of news. In: Proc. of the 38th Annual Meeting on Association for Computational Linguistics. Hong Kong, 2000. 69-76. [doi: 10.3115/1075218:1075228]. 被引量:1
  • 10Lin CY, Hovy E. Automatic evaluation of summaries using N-gram cooccurrence statistics. In: Proc. of the 2003 Conf. of the North American Chapter of the Association for Computational Linguistics on Human Language Technology (NAACL 2003). Morristown: Association for Computational Linguistics, 2003.71-78. [doi: 10.3115/1073445.1073465]. 被引量:1

同被引文献121

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部