期刊文献+

基于OpenCV的交通视频运动目标检测与跟踪 被引量:4

Detection and tracking of moving object in traffic video based on OpenCV
下载PDF
导出
摘要 智能交通系统(ITS)是目前世界交通运输领域正在研究和广泛关注的课题。OpenCV是一种用于数字图像处理和计算机视觉的函数库,由Intel公司开发。本文在目标检测方面,对采集到的交通视频进行灰度化、中值滤波、背景建模、二值化,背景差分等处理,可以较准确地检测出运动目标。在目标跟踪方面,提出了CamShift算法和Kalman滤波器相结合的方法,实现视频车辆的精确跟踪。最后,利用OpenCV的运动物体跟踪的数据结构、函数库,建立了一个视频车辆分析系统。用于道路上车辆的检测与跟踪,并具有良好的鲁棒性。 Intelligent transport system is currently being studied and worldwide focused on in the area of world traffic transport.OpenCV is a library for digital image processing and computer vision.It is developed by company of Inter.In the part of detection,the traffic video which are captured by camera are treated as gray processing,median filtering,background modeling,binary and background difference,which can exactly detect vehicle object.In the part of tracking,we propose a method of camshift,which combined with Kalman filter to carry out video vehicle tracking.At last,the basic framework of object tracking of OpenCV is use to establish a multi-modules video vehicle detection and tracking system,and the results are moderate robustness.
作者 张建飞
出处 《电子测试》 2012年第1期50-53,共4页 Electronic Test
关键词 视频图像 运动目标检测 背景差分 运动目标跟踪 OPENCV video image moving target detection background difference moving target tracking OpenCV
  • 相关文献

参考文献8

二级参考文献29

  • 1任清论,朱方文,袁政鹏.在复杂场景中多目标物的检测识别方法[J].微计算机信息,2004,20(6):58-60. 被引量:5
  • 2李俊韬,张海,范跃祖,王力.复杂场景条件下的运动目标检测算法[J].光电工程,2004,31(B12):36-39. 被引量:13
  • 3毛燕芬,施鹏飞.高斯核密度估计背景建模及噪声与阴影抑制[J].系统仿真学报,2005,17(5):1182-1184. 被引量:10
  • 4Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME- Journal of Basic Engineering, 1960, 82 (Series D): 35-45. 被引量:1
  • 5Kalman R E. New methods and results in linear filtering and prediction theory[J]. Transactions of the ASME-Journal of Basic Engineering, 1961, 83 (Series D): 95-108. 被引量:1
  • 6Lerro D, Bar-Shalom Y. Tracking with debiased consistent converted measurements versus EKF [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 1015-1022. 被引量:1
  • 7Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-481. 被引量:1
  • 8Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation and tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437. 被引量:1
  • 9De-Freitas J F G, Niranjan M, Gee A H, et al. Sequential Monte Carlo methods to train neural net- work models [J]. Neural Computation, 2000, 12 (4): 955-993. 被引量:1
  • 10Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple model in target tracking: a survey [J]. IEEE Transactions on Aerospace and Electronics, 1998, 34(1): 103-124. 被引量:1

共引文献56

同被引文献24

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部