期刊文献+

RLS算法及其改进形式在信号分离中的应用分析 被引量:6

Application of RLS algorithm and its improved forms in signal separation
下载PDF
导出
摘要 本文着重研究了自适应滤波器的重要实现形式——递推最小二乘算法(RLS)的原理,分析了RLS算法在应用中的优点及存在问题。为解决RLS算法收敛速度和稳态误差的矛盾及系统在趋于平稳时跟踪效果差的问题,本文从实现可变遗忘因子和增加自扰动项两个方面介绍了RLS算法的几种改进方法。并将它们应用于复杂电磁环境、强干扰背景下的信号分离中去。通过仿真实验,对RLS算法及其两种改进方法在信号分离中的效果进行了比较,得出可变遗忘因子RLS算法在收敛速度和分离信号的准确性上都具有较好的性能。 This paper focuses on an important form of adaptive filter——recursive least squares algorithm(RLS),analysis of the merits and problems of the RLS algorithm in the application.In order to solve the contradiction between convergence speed and steady-state error and system to track results in stabilizing the problem of poor,in this paper,achieving a variable forgetting factor and increased disturbance from RLS algorithm presented of several improved methods in the two aspects.And apply them in signal separation with the context of strong interference and complex electromagnetic environment.Then by simulation,taking the RLS algorithm and two improved methods of signal separation results in a comparison,we can take the conclusion that variable forgetting factor RLS algorithm in convergence speed and accuracy of signal separation,both with good performance.
出处 《电子测试》 2012年第1期23-27,共5页 Electronic Test
关键词 递推最小二乘算法 信号分离 可变遗忘因子 误差分析 recursive least squares signal separation variable forgetting factor error analysis
  • 相关文献

参考文献9

  • 1C.F. So, S.C.Ng,S.H,Leungc.Gradient based variable forgetting factor RLS algorithm[J].Signal Processing,2003,83:1163-1175. 被引量:1
  • 2Constantin Paleologu, Jacob Benesty,Silviu Ciochina. A Robust Variable Forgetting Factor Recursive Least- Squares Algorithm for System Identification[J].IEEE Signal Processing Letters,2008,15:597-600. 被引量:1
  • 3Hadi Sadoghi Yazdi, Mehri Sadoghi Yazdi,MohammadReza Mohammadi. A Novel Forgetting Factor Recursive Least Square Algorithm Applied to the Human Motion Analysis[J].World Academy of Science, Engineering and Technology,2009,57:969-976. 被引量:1
  • 4李倩茹,王于丁,张晓芳.一种变遗忘因子RLS算法的分析与仿真[J].现代电子技术,2008,31(17):45-47. 被引量:15
  • 5D. J. Park,B.E. Jun. Selfperturbing Recursive Least Squares Algoritlhm with Fast Tracking Capability[J]. Electronic Letters.1992,28:558-559. 被引量:1
  • 6Kwang-Seop Eom, Byung-Eul Jun,Dong-Jo Park. Fast tracking and noise-immunised RLS algorithm based on Kalman filter[J]. Electronic Letters. 1996,3211-2312. 被引量:1
  • 7Anum Ali,Anis-ur-Rehman,Rana Liaqat Ali.An Improved Gain Vector to Enhance Convergence Characteristics of Recursive Least Squares Algorithm[J]. International Journal of Hybrid Information Technology. 2011,4:99-107. 被引量:1
  • 8西蒙·赫金泊适应滤波器原理[M].4版.北京:电子工业出版社,2010. 被引量:1
  • 9张贤达著..现代信号处理[M].北京:清华大学出版社,2002:528.

二级参考文献4

  • 1陈国础,宋文涛,罗汉文,陈强.一种改进RLS算法的性能研究及应用[J].无线电通信技术,2005,31(3):42-43. 被引量:9
  • 2Ling F. Numerically Robust LS Lattice - Ladder Algorithms with Direct Updating of Reflection Coefficients [J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1986, ASSP - 34(4) ;837 - 845. 被引量:1
  • 3皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社,2002. 被引量:1
  • 4Hsu F. Square Root Kalman Filtering on High Speed Data Received over Fading Dispersive HF Channels [J]. IEEE - IT, 1982,9(9):753 - 763. 被引量:1

共引文献14

同被引文献52

  • 1王海涛.自适应噪声对消在引信数字信号处理系统中的应用[J].制导与引信,2009,30(1):13-17. 被引量:6
  • 2杨天虹,屈乐乐,邵清亮,王树刚.连续波雷达同频干扰微波对消技术研究[J].微波学报,2011,27(6):32-36. 被引量:10
  • 3Kaplan Elliott D, Hegarty Christopher J.寇艳红.GPS原理与应用(第二版)[M].北京:电子工业出版社,2007. 被引量:1
  • 4Giuseppe A,Fabrizio. Robust adaptive beamforming for HF surface wave over-the-horizon radar[J]. IEEE transaction on aerospace and electronic system, 2004, 40(2) : 510-524. 被引量:1
  • 5叶昊儒.相参雷达与非相参雷达的差异分析[J].通信与信息技术,2010,14(3):17-18. 被引量:1
  • 6Victor S,Chernyak. Fundamentals of multissite radar systems., multistatic radars and multiradar systems [M]. Beijing: Publishing house of electronics indus- try,2011. 被引量:1
  • 7龚松显,刘树刚,刘跃宣.宽带信号中的窄带干扰抑制LMS算法与RLS算法的仿真实现[J].数字国防,2012(1):44-45. 被引量:1
  • 8AO Wei, XIANG Wanqin, ZHANG, Youpeng. A new variable step size LMS adaptive filtering algo- rithm[C]//IEEE international conference on com-puter science and electronics engineering.[S. 1.-]: IEEE press,2012: 265-267. 被引量:1
  • 9Kapil Belpatre, Mrs Bavhute M R. Comparative per- formanee study between the time-varying LMS(TV- LMS) algorithm LMS algorithm and RLS algorithm [C]//National conference on innovative paradigms in engineering &teehnology. [S. 1. ] : IEEE press, 2012 : 6 -7. 被引量:1
  • 10Vorobyov S A, Gershman A B, and Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313-324. 被引量:1

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部