期刊文献+

一种自适应程序设计方法 被引量:1

Method of adaptive programming
下载PDF
导出
摘要 当前的程序设计都是人工设计执行流程,这种方法具有被动性、机械性、缺乏灵活性等缺点。提出一种基于强化学习的程序设计机制,并实现了相应的算法。根据环境情况和问题要求让计算机自主选择执行流程,通过学习使结果达到最优,同时能实现分层调用。采用这种方法,程序执行可以自主决策,较好地实现了自适应,减少了对设计者的依赖。结果显示,这种方法能取得较好的运行效率。 The current computer programming is designed artificially,which has the weakness of passivity,rigidity and lack of flexibility.This paper proposes a method based on reinforcement learning mechanism,and realizes the corresponding algorithm.According to the environment and requirements,the agent can choose executive process independently and arrive at the optimal result by learning,realize the layered calls.Using this method,the executing program is decision-making,has a way to realize the adaption,and reduces the dependence on designer.The result shows that the method can achieve satisfactory execution efficiency.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第36期80-82,126,共4页 Computer Engineering and Applications
基金 山东省自然科学基金(No.ZR2009GM009) 陕西省教育厅专项科研计划项目(No.08JK430)
关键词 自适应程序设计 强化学习 Q学习 AGENT 优化算法 adaptive programming reinforcement learning Q-learning agent optimization algorithm
  • 相关文献

参考文献11

  • 1Nerving P, Chon D.Adaptive software[EB/OL].http ://www.norvig.com/adapaper-pcai.html. 被引量:1
  • 2王千祥,申峻嵘,梅宏.自适应软件初探[J].计算机科学,2004,31(10):168-171. 被引量:21
  • 3Kaelbling L P, Littman M L, Moore A W.Reinforcement learning: a survey[J].Joumal of Artelligence Research, 1996,4:237-285. 被引量:1
  • 4苏畅,高阳,陈世福,陈兆乾.基于SMDP环境的自主生成options算法的研究[J].模式识别与人工智能,2005,18(6):679-684. 被引量:9
  • 5Watins P,Dayan N.Q-learning[J].Machine Learning, 1992,8(3): 279-292. 被引量:1
  • 6Simpkins C,Bhat S, Mateas M.Towards adaptive programming integrating reinforcement learning into a programming language[C]// ACM SIGPLAN Conference on Object-Oriented Programming,Systems, Languages, and Applications, Nashville, TN, USA, 2008: 19-23. 被引量:1
  • 7Sutton R S, Precup D, Shagh S P.Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning[J]. Artificial Intelligence, 1999,112 (1/2) : 181-211. 被引量:1
  • 8Dietterich T G.Hierarchical reinforcement learning with the MAXQ value function decomposition[J].Journal of Artificial Intelligence Research, 2000,13 : 227-303. 被引量:1
  • 9Parr R.Hierachical control and learning for Markov decision pro- cesses[D].Berkeley, USA: University of California, 1998. 被引量:1
  • 10沈晶编著..分层强化学习理论与方法[M].哈尔滨:哈尔滨工程大学出版社,2007:141.

二级参考文献26

  • 1msrc. wvu. edu/nsf_epscor/cluster_research/ arpa_baa98_1.html 被引量:1
  • 2Kepbart J O,Chess D M. The Vision of Autonomic Computing.IEEE Computer, Jan. 2003. 41-50 被引量:1
  • 3Wang Qianxiang, Huang Gang, Shen Junrong, Mei Hong, Yang Fuqing. Runtime Software Architecture Based Software Evolution And Adaptation, COMPSAC 2003, Dallas, Nov. 2003 被引量:1
  • 4Laddaga R. Creating robust software through self-adaptation.IEEE Intelligent Systems, 14, May/June 1999.26-29 被引量:1
  • 5Laddaga R, et al. Introduction to Self-adaptive Software: Applications. Lecture Notes in Computer Science,2001,1936:1 - 5 被引量:1
  • 6Kephart J O,Chess D M. The Vision of Autonomic Computing.IEEE Computer, 2003,36(1) :41-50 被引量:1
  • 7Laddaga R, et al. Results of The First International Workshop on Self Adaptive Software, Lecture Notes in Computer Science,2001,1936:242-247 被引量:1
  • 8Kokar MM, Baclawski K, Eracar Y A. Control theory based foundations of self controlling software. IEEE Intelligent Systems, 1999,14 (3): 37-45 被引量:1
  • 9Diao Y, Hellerstein J L,Parekh S, Bigus J P. Managing Web Server Performance with AutoTune Agents. IBM Systems Journal, 2003,42 (1). URL. www. research. ibm. com/journal/sj/421/diao. pdf 被引量:1
  • 10Oreizy P, et al. An architecture-based approach to self-adaptive software. IEEE INTELLIGENTSYSTEMS,MAY/JUNE 1999 被引量:1

共引文献28

同被引文献53

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部