期刊文献+

射影空间的一个刻画

A Characterization of Projective Spaces
下载PDF
导出
摘要 设X是光滑的n维射影簇(n≥2),ε是X上秩为r=n-k的丰富向量丛(k≥-1).则X是射影空间Pn,ε是线丛OPn(1)的直和,当且仅当Λ(ε,KX)=k+1. Let [X] be a smooth projective variety of dimension [n] and [ε] is an ample vector bundle with rank [(k≥-1)] over [X].Then [X] is a projective space and [ε] is a direct sum of line bundles [OPn(1)] if and only if [Λ(ε,KX)=k+1].
出处 《长春理工大学学报(自然科学版)》 2011年第4期167-170,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 射影簇 向量丛 射影空间 projective varieties vector bundles projective spaces
  • 相关文献

参考文献14

  • 1Cho K, Miyaoka Y, Shepherd N I.Characterization of projective space and applications to complex symplectic manifolds [J].Advan Stud Pure Math, 2002,35 : 1-88. 被引量:1
  • 2高秀英.拉氧头孢钠临床疗效观察[J].现代应用药学,1996,13(3):59-60. 被引量:2
  • 3张凤凯,李家泰,潘石,郝凤兰,陈杨.拉氧头孢对临床分离的1143株致病菌体外抗菌作用的研究[J].中国抗生素杂志,1994,19(3):221-229. 被引量:6
  • 4Wisniewski J A. Length of extremal rays and gen- eralized adjunction[J].Math Z,1989,200:409-427. 被引量:1
  • 5Hartshome R. Algebraic Geometry[M].New York: Springer-Verlag, 1966. 被引量:1
  • 6Mori S. Threefolds whose canonical bundles are not numerically effective [J].Ann Math, 1982, 116: 133-176. 被引量:1
  • 7Kawamata Y, Matsuda K, Matsuki K. Introduction to the minimal model problem[J].Advan Stud Pure Math, 2002,10: 283-360. 被引量:1
  • 8Wisniewski J A. On contractions of extremal rays of Fano manifolds [J].J Reine Angew Math, 1991, 417:141-157. 被引量:1
  • 9Okonek C, Schneider M, Spindler H. Vector Bun- dles on Complex Projective Space [J].Basel: Birkhauser, 1980. 被引量:1
  • 10Fujita T. On adjoint bundles of ample vector bun- dles[J] .In: Lecture Notes Math, 1992,1507:105-112. 被引量:1

二级参考文献35

  • 1苏继红,赵逸才.奇维数代数簇的小收缩映射的结构[J].中国科学(A辑),2006,36(12):1355-1364. 被引量:2
  • 2Cho K, Miyaoka Y, Shephered N I. Characterizations of projective space and applications to complex symplectic manifolds. Advan Stud Pure Math, 35:1-88 (2002) 被引量:1
  • 3Fujita T. Remarks on quasi-polarized varieties. Nagoya Math J, 115:105-123 (1989) 被引量:1
  • 4Lazarsfeld R. Some applications to the theory of positive vector bundles. In: Lecture Notes in Math, vol 1092, 1984. 29-61 被引量:1
  • 5Cho K, Sato E. Smooth projective varieties dominated by smooth quadric hypersurfaces in any characteristic. Math. Z, 217:553-565 (1994) 被引量:1
  • 6Wisniewski J A. Length of extremal rays and generalized adjunction. Math Z, 200:409-427 (1989) 被引量:1
  • 7Lanteri A, Sommese A J. A vector bundle characterization of pn. Abh Math Sere Univ Hamburg, 58: 89~96 (1988) 被引量:1
  • 8Ye Y G, Zhang Q. On ample vector bundles whose adjunction bundles are not numerically effective. Duke Math J, 60:671-688 (1990) 被引量:1
  • 9Sato E. Uniform vector bundles on a projective space. J Math Soc Japan, 28:123-132 (1976) 被引量:1
  • 10Fujita T. On polarized manifolds whose adjoint bundle are not semipositive. Advan Stud Pure Math, 10: 167-178 (1987) 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部