摘要
设X是光滑的n维射影簇(n≥2),ε是X上秩为r=n-k的丰富向量丛(k≥-1).则X是射影空间Pn,ε是线丛OPn(1)的直和,当且仅当Λ(ε,KX)=k+1.
Let [X] be a smooth projective variety of dimension [n] and [ε] is an ample vector bundle with rank [(k≥-1)] over [X].Then [X] is a projective space and [ε] is a direct sum of line bundles [OPn(1)] if and only if [Λ(ε,KX)=k+1].
出处
《长春理工大学学报(自然科学版)》
2011年第4期167-170,共4页
Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词
射影簇
向量丛
射影空间
projective varieties
vector bundles
projective spaces