期刊文献+

随机缺陷场对网壳结构性能影响的研究 被引量:5

Influence of stochastic imperfection field on performance of latticed shell structures
原文传递
导出
摘要 施工误差、杆件的初偏差等不可控制因素必然导致网壳结构具有一定的初始缺陷.初始缺陷及其随机性是影响结构稳定和承载力的重要因素.基于标准正交基的随机场展开法为理论基础,通过对随机初始缺陷相关结构的分解将其投影在结构屈曲模态正交基上.算例表明,本方法可以用较少的随机变量描述原随机缺陷场,从而全面高效地寻求初始缺陷的最不利分布形式,保证缺陷敏感性结构具有较高的安全可靠性,适用于大型工程结构的随机缺陷分析. The uncontrollable factors such as construction errors, the initial deviation of components, etc. will inevitably lead to a certain initial imperfections. It is generally known that the stochastic initial imperfections of the structure are an important factor to affect structural stability and bearing capacity. Since these imperfections are random in nature, this paper proposes the method mainly based on the standard orthogonal basis to expand the stochastic field, and takes into account the decomposition of the stochastic initial imperfections related to structures, which is projected in the buckling modal orthogonal basis. Numerical example shows that this method can use less random variables effectively to describe the original stochastic imperfections field, and efficiently search for the most unfavorable initial imperfection distribution form in order to ensure the imperfection sensitivity structures have a higher reliability. So it can be applied to large-scale engineering structure stochastic imperfection analysis.
出处 《空间结构》 CSCD 北大核心 2011年第4期23-27,共5页 Spatial Structures
基金 国家自然科学基金资助项目(50978216) 高等学校博士学科点专项科研基金(20096120110003) 陕西省教育厅专项基金(2010JK624)
关键词 网壳结构缺陷 随机场 弧长法 屈曲模态 标准正交基 正交展开 latticed shell structures imperfections stochastic field arc length method buckling mode standard orthonormal basis orthonormal expansion
  • 相关文献

参考文献16

  • 1沈世钊,陈昕著..网壳结构稳定性[M].北京:科学出版社,1999:245.
  • 2KASHANI M, CROLL J G A. Lower bounds for over- all buckling of spherical space domes[J]. Journal of En gineering Mechanics, ASCE, 1994,120(5): 949-970. 被引量:1
  • 3YAMADA M, UCHIYAMA K, YAMADA S, et al. Theoretical and experimental study on the buckling of rigidly jointed single-layer latticed spherical shells[A]. Proceedings of IASS Symposium on Shells, Membrane, and Space Frames[C], 1986, 3: 113-120. 被引量:1
  • 4KATO S, YAMADA S, TAKASHIMA H, et al. Buckling stress of a member in a rigidly jointed single- layer reticular dome[A]. Proceedings of IASS Sympo- sium[C], 1991:109-116. 被引量:1
  • 5BOLOTIN V V. Statistical Methods in the Nonlinear Theory of Elastic Shells [R]. NASA TTF-85, 1962. 被引量:1
  • 6ELISHAKOFF I, ARBOCZ J. Reliability of axially compressed cylindrical shells with random imperfections [J]. Internatioal Journal of Solids & Structures, 1982, 18: 563-585. 被引量:1
  • 7ELISHAKOFF I, VAN M S, VERMEULEN P G, et al. First-order second-moment analysis of the buckling of shells with random imperfections[J]. AIAA Journal, 1987,(8): 1113-1117. 被引量:1
  • 8ARBOCZ J, HOL J M A M. Collapse of axially com- pressed cylindrical shells with random imperfections [J].AIAAJournal, 1991,(12): 2247-2256. 被引量:1
  • 9CHRYSSANTHOPOULOS M K, BAKER M J,DOWLING P J. Statistical analysis of imperfections in stiffened cylinders[J]. Journal of Structural Engineer- ing, 1991,117(7): 1979-1997. 被引量:1
  • 10CHRYSSANTHOPOULOS M K, BAKER M J, DOWLING P J. Imperfection modeling for buckling analysis of stiffened cylinders [J].Journal of Structi- ural Engineering, 1991,117(7) : 1998-2017. 被引量:1

同被引文献45

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部