期刊文献+

求解0-1背包问题的一种新混合算法 被引量:4

New hybrid algorithm to solve 0-1 knapsack problem
下载PDF
导出
摘要 用动态规划算法求解0-1背包问题的时空复杂度为O(nC)。这个空间复杂度在求解大规模问题上是不可接受的。从计算0-1背包问题最优值的递归方程出发,给出高效利用内存的动态规划算法。为了克服内存高效的动态规划算法带来的缺点,设计新混合算法求解0-1背包问题。该新混合算法的时间复杂度为O(nC);它消除了回溯阶段,并且为求得放入背包的物品所使用的空间复杂度仅为O(「n/d」+C),其中d为计算机字长。实验结果表明,混合算法的工作效率与理论分析相同。 When using dynamic programming algorithm to solve 0-1 knapsack problem, its time complexity and space complexity both are O(nC). Its space complexity is not acceptable in case of large scale problem. From the recursive equations for computing optimal value of O-1 knapsack problem, Memory Efficient Dynamic Programming ( MEDP ) is proposed. In order to conquer the drawback of MEDP, a new hybrid algorithm is put forward, which combines divided-and-conquered strategy with it and whose time complexity is O (nC). The hybrid algorithm eliminates the backtracking step, while it can find the goods put into the knapsack under the space complexity O ( [nl d] + C), where d is the word length of computer. Experimental result demonstrates that the algorithm works identically with the theory.
出处 《计算机工程与应用》 CSCD 2012年第4期50-53,共4页 Computer Engineering and Applications
关键词 0-1背包问题 动态规划 分治策略 混合算法 0-1 knapsack problem , dynamic programming divided-and-conquered hybrid algorithm
  • 相关文献

参考文献9

二级参考文献50

共引文献216

同被引文献28

  • 1李康顺,贾玉珍,张文生.一种基于模式替代的遗传算法解0/1背包问题[J].计算机应用研究,2009,26(2):470-471. 被引量:10
  • 2李端,钱富才,李力,高建军.动态规划问题研究[J].系统工程理论与实践,2007,27(8):56-64. 被引量:30
  • 3Liu A,Wang J,Han G,et al.Improved simulated annealing algorithm solving for 0/1 knapsack problem[C]//Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications,ISDA.Washington,DC:IEEE Computer Society,2006:1159-1164. 被引量:1
  • 4Bansal J C,Deep K.A modified binary particle swarm optimization for knapsack problems[J].Applied Mathematics and Computation,2012,218(22):11042-11061. 被引量:1
  • 5Zhao Fang,Ma Yulei,Zhang Junpeng.Solving 0-1 knapsack problem based on immune clonal algorithm and ant colony algorithm[C]//Proceedings of the 2012 International Conference on Communication,Electronics and Automation Engineering,2013:1047-1053. 被引量:1
  • 6Posypkin M A,Sigal I K.A combined parallel algorithm for solving the knapsack problem[J].Journal of Computer and Systems Sciences International,2008,47(4):543-551. 被引量:1
  • 7Chen Shih-Hsin,Chen Min-Chih,Chang Pei-Chann,et al.Guidelines for developing effective estimation of distribution algorithms in solving single machine scheduling problems[J].Expert Systems with Applications,2010,37(9):6441-6451. 被引量:1
  • 8Expósito-Izquierdo C,GonzáLez-Velarde J L,MeliáN-Batista B,et al.Hybrid estimation of distribution algorithm for the quay crane scheduling problem[J].Applied Soft Computing,2013,13:4063-4076. 被引量:1
  • 9Brownlee A E I,McCall J A W,Zhang Q,et al.Approaches to selection and their effect on fitness modelling in an estimation of distribution algorithm[C]//IEEE Congress on Evolutionary Computation,Hong Kong,2008:2621-2628. 被引量:1
  • 10Ceberio J E,Irurozki A M,Lozano J.A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems[J].Progress in Artificial Intelligence,2012,1(1):103-117. 被引量:1

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部