期刊文献+

椭圆球面波脉冲产生系统量化误差分析 被引量:1

Quantization Error Analysis of PSWF Pulse Generator
下载PDF
导出
摘要 椭圆球面波函数(PSWF)特性优良,是极具前途的非正弦函数。由于幅度量化及数模转换器(DAC)输入位数有限,在基于直接数字波形合成的PSWF脉冲产生系统中,量化误差不可避免。给出该产生系统误差模型,重点针对量化误差问题,从随机信号分析的角度分析了PSWF脉冲产生系统中影响幅度量化误差大小的主要因素,通过仿真定量分析了量化误差对所产生PSWF脉冲时域波形、频谱及互相关特性和频域能量聚集性等重要特性的影响。理论分析和仿真结果表明:产生系统采用高于4倍的过采样率和大于12 bit的量化即可有效降低量化误差对产生PSWF信号性能的影响。所得结论对工程应用研究具有一定参考价值。 Prolate spheroidal wave functions(PSWFs) are very promising non- sinusoidal functions with excellent features. Due to the limitation bits of amplitude quantization and digital to anologue converter(DAC), the quantization error in the PSWF pulse generator based on direct digital waveform synthesis(DDWS) is inevitable. This paper gives the system's holistic error model, places emphasis on the problem of quantization error, analyses the impacts of the system's quantization error from the perspective of random signal analysis. Theoretical analysis and simulation results show that using over- sampling rate more than 4 times and quantization bits greater than 12 bits can effectively reduce the quantization error of generated PSWF. The conclusions has some value for the engineering and study as references.
出处 《电讯技术》 北大核心 2012年第1期5-12,共8页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60772056) 山东省"泰山学者"建设工程专项经费资助项目~~
关键词 椭圆球面波函数 量化误差分析 直接数字波形合成 spheroidal wave function(PSWF) quantitation error analysis direct digital waveform synthesis(DDWS )
  • 相关文献

参考文献16

  • 1Slepian D. Prolate spheroidal wave functions, Fourier analy- sis, and uncertainty - I[J]. BELL System Technical Journal, 1978,57(3) :1371 - 1430. 被引量:1
  • 2赵志勇,王红星,钟佩琳,舒根春,刘锡国,刘传辉.基于频-时域的非正弦波通信系统设计方法[J].电讯技术,2010,50(4):29-33. 被引量:8
  • 3刘锡国,张磊,舒根春,刘传辉.基于PSWF的非正弦时域正交频分调制方法[J].电讯技术,2010,50(11):15-20. 被引量:4
  • 4Gilbert G W, Shen X P. Wavelets based on prolate spheroidal wave functions[J]. Journal of Fourier Analysis and Applications, 2004(10) : 1 - 26. 被引量:1
  • 5Martin A Lindquist, Cun- Hui Zhang, Gary Glover, et al. A Generalization of the Two - Dimensional Prolate Spheroidal Wave Function Method for Nonrectilinear MRI Data Acquisi- tion Methods [ J]. IEEE Transactions on Image Processing, 2006,15(9) : 2792 - 2804. 被引量:1
  • 6Pei Soo - Chang, Ding Jian - Jun. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms[J]. Journal of the Optical So- ciety of America A, 2005, 22(3) :460 - 474. 被引量:1
  • 7Le Chung Tran, Mertins A. Space - Time - Frequency Code implementation in MB - OFDM UWB communications: De- sign criteria and performance [ J ]. IEEE Transactions on Wireless Communications, 2009, 8(2) :701 - 713. 被引量:1
  • 8王红星,赵志勇,刘锡国,等.非正弦时域正交调制方法:中国,CN200810159238.3[P].2009-04-15. 被引量:12
  • 9赵志勇,王红星,李洪烈,毛忠阳.非正弦波通信时域正交椭圆球面波脉冲设计方法[J].电子与信息学报,2009,31(12):2912-2916. 被引量:32
  • 10舒根春,王红星,刘传辉.非正弦短波通信方案及性能分析[J].电讯技术,2011,51(7):147-151. 被引量:3

二级参考文献42

  • 1陆音,朱洪波.基于近似扁长椭球波函数的超宽带脉冲设计[J].通信学报,2005,26(10):60-64. 被引量:20
  • 2曹祁生,梁德群.非正交多重调制的研究[J].电子学报,2006,34(1):19-23. 被引量:15
  • 3徐玉滨,王芳,沙学军.UWB通信系统双正交PSWF脉冲波形设计[J].哈尔滨工业大学学报,2007,39(1):81-84. 被引量:18
  • 4张其善,张凤元,杨东凯.信息传输与正交函数[M].北京:国防工业出版社,2008:137-140. 被引量:4
  • 5Reed J H. An Introduction to Ultra Wideband Communication Systems[M]. New York, Prentice Hall PTR, 2005: 2-14,. 被引量:1
  • 6Khare K. Bandpass sampling and bandpass analogues of prolate spheroidal functions[J]. Signal Processing, 2006, (86): 1550-1558. 被引量:1
  • 7Parr B, Cho B, and Wallace K. A novel ultra-wideband pulse design algorithm[J]. IEEE Communication Letters, 2003, 7(5): 219-221. 被引量:1
  • 8Dilmaghani Reza S, Ghavami M, and Allen B, et al.. Novel UWB pulse shaping using prolate spheroidal wave functions[C]. 14th IEEE International Symposium on Personal, Indoor & Mobile Radio Communication Proceedings, 2003: 602-606. 被引量:1
  • 9Hamamura M and Hyuga J. Spectral efficiency of orthogonal set of truncated MC-CDMA signals using discrete prolate spheroidal sequences[C]. WCNC 2008 Proceedings in IEEE Communications Society. 2008: 980-984. 被引量:1
  • 10Jitsumatsu Y and Kohda T. Prolate spheroidal wave functions induce gaussian chip waveforms[C]. ISIT 2008, Toronto. 2008: 1363-1367. 被引量:1

共引文献44

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部