期刊文献+

卫星导航系统中基于序贯处理的Kalman滤波 被引量:2

Application of Kalman filtering based on sequential processing for satellite navigation
下载PDF
导出
摘要 为了有效降低基于Kalman滤波方法的导航定位求解运算量,保证实时性,提出了一种以单个卫星为基本滤波单元的基于序贯处理的扩展Kalman滤波(EKF,extended Kalman filtering)方法——单星序贯扩展Kalman滤波(S3EKF,single-satellite sequential extended Kalman filtering)法。仿真结果表明,S3EKF法相对常规EKF法而言,当可见卫星数超过7颗时,能有效改善运算量,且改善量随可见卫星数的增加而增加,当可见卫星数在15颗及以上时,运算量的改善超过50%;同时,S3EKF法能在可见卫星发生变化时保证求解的一致性和稳定性。 In order to reduce the operational volume and ensure the real-time capability of navigation algorithm of Kal- man filtering, a novel filtering method called single-satellite sequential extended Kalman filtering (S3EKF) was proposed based on extended Kalman filtering (EKF) and sequential processing, where the single-satellite was as basic filtering unit. Simulation results show that, compared with the traditional EKF method, the S3EKF method can decrease the computa- tion load efficiently when the number of visible satellites is no less than 7, and the reduction of computation load in- creases with the increase of the satellite's visible number, the decrease will reach more than 50% when the number of visible satellites is no less than 15. On the other hand, the consistency and stability of navigation solution are good when the satellites and their number are time-vraiant in S3EKF method.
出处 《通信学报》 EI CSCD 北大核心 2012年第1期174-181,共8页 Journal on Communications
基金 国防科工局航天民用专项 北京市重点学科基金资助项目(XK100070525)~~
关键词 卫星导航 扩展Kalman滤波 序贯处理 最小二乘法 运算量 satellite navigation extended Kalman filtering sequential processing least square method computation load
  • 相关文献

参考文献18

  • 1付梦印等编著..Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003:215.
  • 2秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004. 被引量:76
  • 3宋迎春..动态定位中的卡尔曼滤波研究[D].中南大学,2006:
  • 4邓自立著..信息融合滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2007:484.
  • 5YAMAGUCHI S, TANAKA T. GPS standard positioning using Kalman filter[A]. SICE-ICASE International Conference 2006[C]. Bexco, Busan, Korea, 2006. 1351-1354. 被引量:1
  • 6WANG W, HAO Y L, XUE B. Study on positioning algorithm for navigation signal based on improved Kalman filter[A]. Proceedings of the 2006 International Conference on Mechatronics and Automation[C]. Luoyang, China, 2006.882-886. 被引量:1
  • 7JWO D J, LAI C N. Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation [J]. GPS Solutions, 2008, 12(4) 249-260. 被引量:1
  • 8JWO D J, WANG S H. Adaptive fuzzy strong tracking extended Kal man filtering for GPS navigation[J]. IEEE Sensors Journal, 2007, 7(5):778-789. 被引量:1
  • 9ZHANG L, CHU H B, ZHANG N T. Anti-spoofing extended Kalman filter for satellite navigation receiver[A]. International Conference on Wireless Communications, Networking and Mobile Computing[C] Shanghai, China, 2007.996-999. 被引量:1
  • 10HAN L, JING Z R. Adaptive extended Kalman filter based on genetic algorithm for tightly-coupled integrated inertial and GPS navigation[A]. 2009 Secong International Conference on Intelligent Computation Technology and Automation[C]. Changsha, Hunan, China, 2009. 520-524. 被引量:1

二级参考文献6

  • 1刘晨,冯新喜.杂波环境下基于红外传感器和雷达融合的机动目标跟踪算法[J].空军工程大学学报(自然科学版),2006,7(2):25-28. 被引量:8
  • 2Park Seong- Taek, Jang Gyu Lee. Lmproved Kalman Filter Design for Three -Dimensional Radar Measurements [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2) :727 -739. 被引量:1
  • 3Gan Qiang, Harris C J. Comparison of Two Measurement Fusion Methods for Kalman -filter based Multisensor Data Fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (1) :273 -280. 被引量:1
  • 4Blair W D, Rice T R, Alouani A T. Asynchronous Data Fusion for Target Tacking with a Multi-tasking[J]. Radar and Optical Sensor, Acquisition, Tracking and Pointing,2001,148:234 - 280. 被引量:1
  • 5Farina A, Ristic B, Benvenuti D. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters [J]. Aerospace and Electronic Systems, IEEE Transactions,2002, (38) :854 - 867. 被引量:1
  • 6李文.国外精确制导技术的现状及发展[J].红外技术,1999,21(1):10-12. 被引量:12

共引文献84

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部