期刊文献+

高阶PID采样迭代学习控制 被引量:2

Higher-Order PID Sampled-Data Iterative Learning Control
下载PDF
导出
摘要 针对一类非线性带扰动系统提出了高阶PID采样迭代学习控制算法,讨论了高阶算法的收敛性问题以及该算法的优势与缺陷。与传统的证明方法不同,利用泰勒级数展开法证明了被控对象在输入干扰和输出测量噪声均有界的情况下,高阶PID采样迭代学习控制算法的收敛性,并且得出了收敛条件。由于收敛条件中没有积分项,因此更加利于分析计算。与传统的一阶采样迭代学习控制算法相比,高阶采样迭代学习控制算法由于利用了更多先前的控制信息而能使被控对象的实际输出更加接近理想输出。给出了相应的数值仿真,证明了理论分析的有效性。与此同时,结合啤酒生产过程中糖化阶段中酒花添加等实际问题对该算法的应用前景作了一定的分析。 Higher-Order PID Sampled-Data Iterative Learning Control algorithm (HOSDILC) for a class of uncertain nonlinear system with time-delay and disturbances and discusses the advantages and disadvantages of this algorithm is presented. By using Taylr's series, it proves the convergence of the HOSDILC. As the mathematical expression for convergence contains no integral term, it is much easier to calculate. Comparing with the traditional one-order sampled-data iterative learning control, HOSDILC has a better control perform- ance as it utilize much more early information. A numerical example is given to prove the efficacy of the theoretical analysis. Mean- while, based on the practical problems such as hop dosing during the beer brewing, the perspective of this algorithm in the practical environment is analyzed.
作者 刘飞 范杨
出处 《控制工程》 CSCD 北大核心 2012年第1期73-76,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(NSFC60974001) 江苏省"六大人才高峰"项目
关键词 高阶PID采样迭代学习控制 时滞非线性系统 泰勒展开 higher-order PID sampled-data iterative learning control nonlinear system with time-delay taylor series
  • 相关文献

参考文献11

二级参考文献27

共引文献43

同被引文献28

  • 1李宏胜.具有扰动的非线性系统高阶迭代学习控制[J].模式识别与人工智能,2006,19(4):450-454. 被引量:5
  • 2GAO F, YANGA Y, SHAO C. Robust iterative learning control with applications to injection molding process [J]. Chemical Engineering Science, 2001, 56(24): 7025 -7034. 被引量:1
  • 3PANG B, SHAO C. Modified Newton-based ILC solving specific tar- get tracking problems for non-linear batch reactor [J]. International Journal of Modelling, Identification and Control, 2013, 18(2): 158 - 165. 被引量:1
  • 4OWENS D H, FENG K. Parameter optimization in iterative learning control [J]. International Journal of Control, 2003, 76(11): 1059 - 1069. 被引量:1
  • 5LI H J, HAO X H, XU W T. A fast parameter optimal iterative learn ing control algorithm [C] #2008 International Conference on Embed ded Software and Systems Symposia. Los Alamitos, CA: IEEE, 2008 375 - 379. 被引量:1
  • 6HAO X H, OWENS D H, DALEY S. Proportional difference type iterative learning control algorithm based on parameter optimiza- tion [C]//2008 Chinese Control and Decision Conference. New York: IEEE, 2008:3136 - 3141. 被引量:1
  • 7HATONEN J, OWENS D H, FENG K. Basis functions and parameter optimisation in high order iterative learning control [J]. Automatica, 2006, 42(2): 287 - 294. 被引量:1
  • 8HARTE T J, HATONEN J, OEWNS D H. Discrete time inverse model-based iterative learning control: stability, monotonicity and robustness [J]. International Journal of Control, 2005, 78(8): 577 - 586. 被引量:1
  • 9OEWNS D H, HATONEN J, DALEY, S. Robust monotone gradient- based discrete-time iterative learning control [J]. International Jour- nal of Robust and Nonlinear Control, 2009, 19(6): 634 - 661. 被引量:1
  • 10OWENS D H, TOMAS-RODRIGUEZ M, DALEY S. Limit sets and switching strategies in parameter-optimal iterative learning con- trol [J]. International Journal of Control, 2008, 81(44): 626 - 640. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部