期刊文献+

不同理性的寡头博弈模型动力学分析

Analysis of Dynamics of Duopoly Game with Different Rationality
下载PDF
导出
摘要 研究具有有限理性和适应性预期的双寡头博弈模型的动力学行为。基于有限理性假设,建立双寡头博弈模型,证明了该模型平衡点的存在性,并给出了稳定性的充分条件。对该模型进行了数值模拟,结果显示,随着参数的变化,平衡点失稳,发生了倍周期分岔,并进而产生了混沌行为。最大Lyapunov指数的计算,从理论上保证了该系统中混沌的存在性。 Dynamics of a nonlinear duopoly game with heterogeneous players is studied. Based on the players with bounded rationality, a duopoly game is modeled. The existence of Nash equilibrium point is proved. And sufficient conditions to guarantee the stability of the Nash equilibrium point are given. Nnumerical simulations show that as some parameters of the model are varied, the stability of the Nash equilibrium point is lost and the complex behaviors (including flip bifurcation and chaos) occur. The computation of the maximal Lyapunov exponent verifies theoretically the existence of chaos.
作者 于晋臣
出处 《山东交通学院学报》 CAS 2011年第4期70-75,共6页 Journal of Shandong Jiaotong University
基金 山东交通学院院科研基金资助项目(Z201030)
关键词 双寡头 平衡 最大LYAPUNOV指数 duopoly equilibrium the maximal Lyapunov exponent
  • 相关文献

参考文献12

  • 1Cournot A. Researches into the Mathematical Principles of the Theory of Wealth[ M ]. New York: the Macmillan Company, 1838. 被引量:1
  • 2Puu T. Chaos in Duopoly Pricing[J]. Chaos,Solitons & Fractals,1991,1 (6) :573 -581. 被引量:1
  • 3Kopel M. Simple and Complex Adjustment Dynamics in Coumot Duopoly Models[ J]. Chaos, Solitons & Fractals ,1996,7 (12) :2031 -2048. 被引量:1
  • 4Agiza H N. Explicit Stability Zones for Cournot Games with 3 and 4 Competitors [ J ]. Chaos, Solitons & Fractals, 1998, 9 (12) : 1955 - 1966. 被引量:1
  • 5]Agiza H N. On the Stability , Bifurcations, Chaos and Chaos Control of Kopel Map [ J]. Chaos, Solitons & Fractals, 1999,10 (11):1909 -1916. 被引量:1
  • 6Agiza H N, Hegazi A S, Elsadany A A. The Dynamics of Bowley's Model with Bounded Rationality [ J ]. Chaos, Solitons & Fractals,2001,12 (9) :1705 - 1717. 被引量:1
  • 7]Agiza H N, Hegazi A S, Elsadany A A. Complex Dynamics and Synchronization of Duopoly Game with Bounded Rationality[ J]. Mathematics and Computers in Simulation,2002,58 (2) :133 -146. 被引量:1
  • 8Onazaki T, Sieg G,Yokoo M. Stability, Chaos and Multiple Attractors: a Single Agent Makes a Difference[ J]. Journal of Economic Dynamics and Control ,2003,27(10) : 1917 - 1938. 被引量:1
  • 9Agiza H N, EIsadany A A. Nonlinear Dynamics in the Coumot Duopoly Game With Heterogeneous Players [ J], Physica A,2003,320 (15) :512 - 524. 被引量:1
  • 10I Agiza H N, Elsadany A A. Chaotic Dynamics in Nonlinear Duopoly Game With Heterogeneous Players [ J ]. Applied Mathematics and Computation,2004,149 (3) :843 - 860. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部