期刊文献+

桨叶剖面旋涡发放数值模拟研究

Numerical Simulation Research on Vortex Shedding of Blade Section
下载PDF
导出
摘要 基于任意拉格朗日—欧拉方法(ALE),根据某发生唱音问题的螺旋桨的实际数据,截取螺旋桨在0.7R处的桨叶剖面为研究对象,建立该剖面与流体相互作用的三维单层网格有限元模型,并对桨叶剖面的旋涡发放现象进行研究,然后将旋涡发放频率的数值计算结果与经验公式结果和实测结果进行对比,重点分析了桨叶剖面的结构响应。数值模拟结果表明,桨叶剖面叶背和叶面都产生旋涡脱落现象,数值计算得到旋涡发放频率与实测值接近,桨叶结构存在应力集中区域,应力集中的位置和峰值变化规律与旋涡发放现象有关。 Based on Arbitrary Lagrangian-Eulerian method ( ALE), according to the actual data of certain sound problems of screw propellers, a three-dimensional single gridding finite element model is established by taking the screw propeller blade section at 0.7R and the vortex happening at the blade section is studied. The numerical calculation results, experience formula results and actual measurement of vortex shedding frequency are compared with an emphasis on blade section structure response. The numerical calculation results show that vortex dropping happens on both the back of the blade section and blade surface ; vortex shedding frequency and actual measure are close by the numerical calculation; there exists stress concentrating area in blade structure; the stress concentrating locations and peak value change regulations are related with vortex shedding.
出处 《山东交通学院学报》 CAS 2011年第4期51-58,共8页 Journal of Shandong Jiaotong University
关键词 桨叶剖面 旋涡发放 数值模拟 任意拉格朗日-欧拉方法 结构响应 blade section vortex shedding numerical simulation ALE structural response
  • 相关文献

参考文献7

二级参考文献25

  • 1王倩.标枪飞行轨迹的计算机仿真及实际应用[J].体育科学,2001,21(1):73-78. 被引量:15
  • 2廖红,张绪树,陈维毅,郭媛.考虑空气阻力时标枪最佳出手角度研究[J].中国体育科技,2007,43(1):98-101. 被引量:7
  • 3吴介之.对非定常激发涡升力的回顾与思考[J].国际航空,1998,(3). 被引量:1
  • 4Masahiko Okajima, Maeda Toshio. Beating in propeller singing (A) [J]. J. Acoust. Soc. Anl. , 1996,100(4) : 2733. 被引量:1
  • 5Thompson C, Mulpur A, Mehta V. Transintion to chaos in acoustically drived flow acoustic streaming [ J ]. J. Acoust. Soc. Am., 1991,90:2097-2103. 被引量:1
  • 6Fraser A M. Information and entropy in strange attractors[ J]. IEEE Transaction on Information theory, 1989,35 ( 2 ) : 245 - 262. 被引量:1
  • 7Guckenheimer J. Toolkit for nonlinear dynamics [ J ]. IEEE Transactions on. Circuits and Systems, 1983,CAS - 30:586 - 590. 被引量:1
  • 8Fraser A M. Information and entropy in strange attractors[ J]. IEEE Transaction on Information theory, 1989,35 (2) : 245 - 262. 被引量:1
  • 9Packard N. Geometry from a time series[ J]. Physical Review Letters, 1980,45 (9) : 712 -716. 被引量:1
  • 10Shannon C E, Weaver W. The Mathematical Theory of Communication [M]. Urbana: University of Illinois Press, 1949. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部