期刊文献+

考虑通信流量的复杂网络病毒传播研究 被引量:1

Epidemic Spreading on Complex Networks Considering Communication Flow
下载PDF
导出
摘要 基于一维元胞自动机,考虑信息网络节点全局交互和网络通信流量不均衡的特点,提出新的susceptible-infected-susceptible(SIS)病毒传播模型,研究多种网络拓扑结构下病毒传播行为。研究表明,随着网络通信流量增大,病毒在不同拓扑结构网络中传播速度都明显加快,并在更短的时间内达到稳定的更高的感染规模。研究还发现,在考虑一定通信流量和路由协议下,病毒在节点度分布异质化程度较高的网络中最不易爆发。 Based on the one-dimensional cellular automata and considering the features of the global interaction of information network' s nodes and the unbalances of communication flows, a new susceptible-in- fected-susceptible (SIS) model is proposed to study epidemic spreading in a variety of network topologies with communication flow. Simulation results show that the propagation velocity increases obviously and the infection rate will reach a stable and higher scale in a short time in different network topologies with the communication flow becoming large. Moreover,in a certain communication flow state and under a certain routing protocol, the outbreak of epidemics is very impossible in the networks with higher heterogeneity of degree distribution.
出处 《南京邮电大学学报(自然科学版)》 2011年第6期85-89,98,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60874091) 江苏省高校自然科学基础研究计划(08KJD510022) 江苏省‘六大人才高峰’高层次人才计划(SJ209006) 南京邮电大学引进人才计划(NY209021) 江苏省普通高校研究生科研创新计划(CX10B_193Z)资助项目
关键词 病毒传播 通信流量 元胞自动机 状态转换函数 epidemic spreading communication flow cellular automata transition function
  • 相关文献

参考文献1

二级参考文献2

共引文献29

同被引文献19

  • 1HIROSE A,YOSHIDA S. Generalization characteristics of complex- valued feed forward neural networks in relation to signal coherence [ J]. IEEE Transactions on Neural Networks and Learning Systems, 2012,23(4) :541 -551. 被引量:1
  • 2ARENAS A, DIAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks [ J ]. Physics Reports,2008,469 ( 3 ) :93 - 53. 被引量:1
  • 3FAN Chunxia, JIANG Guoping, JIANG Fenghui. Synchron- ization between two complex dynamical networks using scalar under pinging control [ J ]. IEEE Transactions on Circuits and Systems, 2010, 57 ( 11 ) :2991 - 2998. 被引量:1
  • 4LIU D, MICHEL A N. Cellular neural networks for associative mem- ories [ J]. IEEE Transaction on Circuits and Systems II, Analog Digit Signal Processing,1993,40(2) :119 - 121. 被引量:1
  • 5FROST F, KARRI V. Performance comparison of BP and GRNN models of the neural network paradigm using a practical industrial application[ C]//6th International Conference on Neural Informa- tion Processing ( ICONIP' 99 ). 1999,3 (3) : 1069 - 1074. 被引量:1
  • 6LI Z, JIAO L, LEE J J. Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength [ J]. Physica A,2008,387 (5/6) : 1369 - 1380. 被引量:1
  • 7YANG Xinsong, CAO Jinde, LU Jianquan. Synchronization of de- layed complex dynamical networks with impulsive and stochastic effects [ J ]. Nonlinear Analysis : Real World Application, 2011,12 (4) :2252 - 2266. 被引量:1
  • 8YANG Xinsong, CAO Jinde, LONG Yao, et al. Adaptive lag syn- chronization for competitive neural networks with mixed delays and uncertain hybrid perturbations [ J ]. IEEE Transactions on Neural Networks,2010,21 (10) : 1656 - 1667. 被引量:1
  • 9TANG Yang,FANG Jianan. Adaptive synchronization in an array of chaotic neural networks with mixed delays and jumping stochasti- cally hybrid coupling [ J ]. Communication in Nonlinear Science and Numerical Simulation,2009,14(9/10):3615 -3628. 被引量:1
  • 10LI Hongjie. Cluster synchronization stability for stochastic complex dynamical networks with probabilistic interval time-varying delays [ J ]. Journal of Physics A : Mathematical and Theoretical, 2011, 44:105101. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部