期刊文献+

基于相位编组和灰度统计的海天线检测 被引量:7

Sea-sky-line Detection Based on Phase Grouping and Gray Statistics
下载PDF
导出
摘要 针对复杂海空背景图像中的海天线检测问题,提出了一种基于相位编组和灰度统计的新方法。首先,在边缘图像的基础上运用相位编组算法,得到大量的直线段。然后,根据直线段的图像倾角和到图像原点的距离两个参数对这些直线段进行分类,并选取直线段长度总和最大的若干个类,用这些类中的所有边缘点进行直线拟合,得到若干条候选海天线。最后,通过比较对应于相同水平坐标且以候选海天线上的点为中心的区域的灰度统计值,确定出正确的海天线。大量的实验结果证明,该方法能有效地检测出复杂海空背景下的海天线,具有较强的鲁棒性。 Aimed at the problem of sea-sky-line detection in complicated sea-sky background image, a novel method, based on phase grouping and gray statistics, was presented. Firstly, a lot of line segments were obtained by using phase grouping method on edge image. Secondly, the line segments were classified according to two parameters, the slope angle and the distance to image origin. Several classes which have the largest sum of length of the line segments were selected, and edge points in each selected class were used to fit a straight line, thus several candidate sea-sky-lines could be gained. Finally, the correct sea-sky- line could be elected through comparing statistical gray values of the regions which correspond to the same horizontal pixel coordinates and take the points on the candidate sea-sky-lines as center points. Many experimental results show that the proposed method can detect the sea-sky-line under complicated sea-sky background effectively and has strong robustness.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2011年第6期111-115,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60904084)
关键词 海天线检测 相位编组 灰度统计 鲁棒性 sea-sky-line detection phase grouping gray statistics robustness
  • 相关文献

参考文献10

二级参考文献28

  • 1陈铭节,丁明跃,彭嘉雄.红外图象序列中运动点目标检测技术[J].数据采集与处理,1994,9(4):294-299. 被引量:10
  • 2张兆伟,马治国,钱超,喻志成.红外图像中海天线的提取[J].海军工程大学学报,2005,17(3):97-99. 被引量:8
  • 3裴继红,谢维信,刘上乾.舰船红外成象目标实时识别跟踪算法研究[J].光电工程,1995,22(5):21-31. 被引量:17
  • 4Faraklioti M, M Petrou. Multiresolution versus single resolution horizon picking in 2D seismic images [ J ]. SPIE, 2004,5238:50 - 61. 被引量:1
  • 5Fishier M A, Bolles R C. Random sample concensus: A paradigm for model fitting with applications to image analysis and automated cartography [ J ]. Communications of ACM,March 1981,24(6) :381 -395. 被引量:1
  • 6[3]N C Mohanty.Image Enhancement and Recognition of Moving Ship in Cluttered Background[J].IEEE,82CH1761-6/82,1982,135-140. 被引量:1
  • 7Ulaby F, Kouyate F, Brisco B,Williams L.Textural information in SAR images [J]. IEEE Trans Geoscience and Remote Sensing, 1986, GE-24:235 - 245. 被引量:1
  • 8Canny J. A computational approach to edge detection [ J ]. IEEE Trans on Pattern Analysis Machine Intelligence, 1986,8( 11 ) :679 - 698. 被引量:1
  • 9Dainty J. Laser Speckle and Related Phenomena ( Vol. 9 ) [ M ]. New York : Springer-Verlag Berlin Heidelberg, 1975. 被引量:1
  • 10Touzi R, Lopes A, Bousquet P. A statistical and geometrical edge detector for SAR images [J]. IEEE Trans on Geoscience and Remote Sensing, 1988,26(6) :764 - 773. 被引量:1

共引文献100

同被引文献61

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部